
HSMoD Service
JAVA CODE SIGNER INTEGRATIONGUIDE



Document Information

Product Version 1.7

Document Part Number 007-013897-001

Release Date 21 November 2018

Revision History

Revision Date Reason

Rev. A 17 August 2017 For initial release 1.1.0

Rev. B 19 September 2017 For release 1.1.1

Rev. C 14 November 2017 For release 1.2

Rev. D 05 February 2018 For release 1.3

Rev. E 02March 2018 For HSM on Demand release 1.3

Rev. F 05 April 2018 For release 1.4

Rev. G 07May 2018 For HSM on Demand release 1.4

Rev. H 10 June 2018 For release 1.5

12 September 2018 For release 1.6

21 November 2018 For release 1.7

Trademarks and Copyrights
Copyright 2018 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks
of Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and service
marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Gemalto and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 2



The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or
consequential damages or any damages whatsoever including but not limited to damages resulting from loss
of use, data, profits, revenues, or customers, arising out of or in connection with the use or performance of
information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Gemalto be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Gemalto products. Gemalto disclaims any liability with respect to security
for direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Gemalto.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 3



SafeNet Data Protection on
Demand1.7

JAVA CODE SIGNER INTEGRATIONGUIDE

Contents

Overview 5
Third Party Application Details 5
Supported Platforms 5

Preparing for the Integration 6
Provision the HSMoD Service 6
Adding a Service 6
Adding a Service Client 6
Initializing the HSM 8
Constraints on HSMoD Services 9

Integrating Java Code Signing with an HSM on Demand Service 10
Configuring the java.security file 10
Enabling the HSM on Demand Service keystore 10
Acquire encryption keys for signing the .jar file 11
Signing the .jar file 12

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 4



Overview

Overview
This guide demonstrates to Administrators how to sign Java artifacts using an encryption key generated on an
HSM.

Java code signing is used for signing Java applications for desktops, digitally signing .jar files and Netscape
Object signing recognized by Java Runtime Environment (JRE). In Java, the process for setting up your Code
Signing Certificate consists of creating a keystore and a Certificate Signing Request (CSR) and then, installing
your code signing certificate file to the keystore where the CSRwas generated.

The Java platform enables one to digitally sign .jar files. The signer signs the .jar file using a private key. The
corresponding public key is placed in the .jar file with its certificate, so that it is available for use by anyone who
has access to the key. When the .jar file is signed, the user can timestamp the signature.

This guide demonstrates how to complete Java code signing using a signing key generated on an HSM on
Demand Service.

Using an HSM on Demand Service to generate the RSA keys for Java code signing provides the following
benefits:

> secure generation, storage, and protection of the signing private keys on FIPS 140-2 level 3 validated
hardware.

> full life cycle management of the keys.

> improved performance by off-loading cryptographic operations from the signing servers.

This document contains the following sections:

> "Preparing for the Integration" on page 6

> "Integrating Java Code Signing with an HSM on Demand Service" on page 10

Third Party Application Details
This integration guide uses the following third party applications:

> Java JDK 8

Supported Platforms
The following platforms are tested with HSMoD Service:

Platforms Java Version

RHEL 64-bit JDK 8

Windows Server 2016 JDK 8

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 5



Preparing for the Integration

Preparing for the Integration
Before you proceed with the integration, ensure you have completed the following:

> "Provision the HSMoD Service" below

Provision the HSMoD Service
The HSM on Demand Service provides your client machine with access to an HSM application partition for
storing cryptographic objects used by your applications. Application partitions can be assigned to a single
client, or multiple clients can be assigned to, and share, a single application partition.

You must provision your HSM on Demand service by adding the service, downloading the service client
package and initializing the HSM. Provisioning your HSM on Demand service entails:

> "Adding a Service" below

> "Adding a Service Client" below

> "Initializing the HSM" on page 8

Adding a Service
1. Under the Services tab, select the Add New Service page. ClickDeploy on the service tile for the service

you wish to add.

NOTE ClickDeploy on the HSM on Demand Service tile for your integration.

2. Review the "Terms of Services DPoD." Enable the I have read and accept the Terms of Service above
check box and then clickNext.

3. On the Add <service_type> Service page, enter a name for the Service in the Service Name field. You
can optionally allow non-FIPS approved algorithms by selecting the Allow non-FIPS approved
algorithms check box. ClickNext.

CAUTION! You cannot alter the FIPS setting after creating the service. You must decide
if the service should allow or disallow non-FIPS approved algorithms before clicking
Finish in the next step.

4. Review the configuration summary page. If acceptable, click Finish. If you would like to make changes to
the configuration, clickGo Back.
When completed, the new service is listed underMy Services and a Create Service Client? window
displays.

5. ClickCreate Service Client.

Adding a Service Client
1. In the Create Service Client window enter a name for the service client in the Service Client Name field.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 6



Preparing for the Integration

NOTE If the Create Service Client window is not available, navigate to the Services
tab and click the name of the Service you would like to generate a client for in theMy
Services table. On the Service Details page, clickNew Service Client.

2. SelectCreate Service Client.
A new HSM service client package is created and provided for downloading on your client system.

NOTE The HSM service client package is a zip file that contains system information
needed to connect your client system to an existing HSM on Demand service. The
HSM service client package should download immediately on creation. If it does not, or
you lose access to your HSM service client package it can be accessed or reacquired
through theMy Services table.

3. Transfer the service client package to your client system. You can use SCP, PSCP, WinSCP, FTPS, or any
other secure file transfer tool.

4. Unzip the service client package.
For Linux, enter:
unzip <service_client_package>.zip

For Windows, using the Windows GUI or an unzip tool unzip the file:
<service_client_package>.zip

NOTE For more information about the service client package contents see .

5. Extract the cvclient-min file.

NOTE Extract the cvclient-min file in the directory where you extracted the <service_
client_package>.zip.Do not extract to a new cvclient-min directory.

For Linux, untar the cvclient-min.tar
tar xvf cvclient-min.tar

For Windows, unzip the cvclient-min.zip.

6. Set the environment variable.
For Linux, execute:
source ./setenv

For Windows, right click setenv.cmd and selectRun as Administrator.

NOTE If you encounter the error dll load failed with GetLastError() 126 move the
contents of the cvclient_min folder up one directory and execute setenv.

7. Start LunaCM.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 7



Preparing for the Integration

For Linux, execute the following from the directory where you extracted the cvclient-min.tar file.
./bin/64/lunacm

For Windows, execute the following from the directory where you unzipped the cvclient-min.zip file.
lunacm

Initializing the HSM
1. Set the active slot to the service partition.

lunacm:>slot set -slot <slot_number>

NOTE Execute slot list in LunaCM to identify the slot number associated with your
service.

2. Initialize the application partition. During this process you will create the partition's Security Officer (SO), set
the SO password, and specify the cloning domain.
lunacm:> partition init -label <service_label>

3. Optional: If you wish to transfer key material to or from a PED-authenticated Luna partition, you initialize the
SafeNet Data Protection On Demand partition using the red PED domain key.

a. For DPoD deployments, contact customer support to obtain the necessary PED drivers so that your
HSM client can communicate with the PED.

b. Attach the PED locally to the client computer, insert the red cloning domain PED key, and initialize the
partition, including the option to set the cloning domain from the red PED key. Execute:
lunacm:> partition init -label <cryptovisor_partition_label> -importpeddomain

4. Log in as the partition's Security Officer:
lunacm:>role login -name Partition SO

5. Initialize the Crypto Officer role:
lunacm:>role init -name Crypto Officer

6. Log out of the partition Security Officer role and log in as the Crypto Officer.
lunacm:>role logout
lunacm:>role login -name Crypto Officer

7. You must change the Crypto Officer password immediately on the initial log in. Failure to due so will result in
a password error on subsequent logins.
lunacm:>role changepw -name Crypto Officer

8. Initialize the Crypto User role:
lunacm:>role init -name Crypto User

9. Log out of the partition Crypto Officer role and log in as the Crypto User.
lunacm:>role logout
lunacm:>role login -name Crypto User

10.You must change the Crypto User password immediately on the initial log in. Failure to do so will result in a
password error on subsequent logins.
lunacm:>role changepw -name Crypto User

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 8



Preparing for the Integration

This completes initializing the HSM on Demand Service. The Crypto Officer and Crypto User roles can now
be used to integrate applications with the HSMoD service to perform cryptographic operations

Constraints on HSMoDServices
Please take the following limitations into consideration when integrating your application software with an HSM
on Demand Service.

HSM on Demand Service in FIPS mode
HSMoD services operate in a FIPS and non-FIPSmode. If your organization requires non-FIPS algorithms for
your operations, ensure you enable the Allow non-FIPS approved algorithms check box when configuring
your HSM on Demand service. The FIPSmode is enabled by default.

Refer to theMechanism List in the SDKReference Guide for more information about available FIPS and non-
FIPS algorithms.

Verify HSM on Demand <slot> value
LunaCM commands work on the current slot. If there is only one slot, then it is always the current slot. If you are
completing an integration using HSMoD services, you need to verify which slot on the HSMoD service you send
commands to. If there is more than one slot, then use the slot set command to direct a command to a
specified slot. You can use slot list to determine which slot numbers are in use by which HSMoD service.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 9



Integrating Java Code Signing with an HSM on Demand Service

Integrating Java Code Signing with an HSM on
Demand Service
This document provides detailed instructions to use the Java keytool utility to generate signing keys and
certificates using the HSM on Demand Service, and then use those keys to sign a .jar file.
Ensure that the Java Development Kit (JDK) is installed on your local system, and the bin directory is
accessible by users on the system. We recommend adding the JDKBin folder to the PATH environment,
alternatively, you can run the commands from the /bin/ directory.

This integration contains the following topics:

> "Configuring the java.security file" below

> "Enabling the HSM on Demand Service keystore" below

> "Acquire encryption keys for signing the .jar file" on the next page

> "Signing the .jar file" on page 12

Configuring the java.security file
You must update the java.security configuration file to use the SafeNet security providers and the HSM on
Demand Service.

To configure the java.security file

1. Open the Java security configuration file java.security in a text editor. The file is available at <JDK_
installation_directory>/jre/lib/security.

2. Update the Luna Providers in the java.security file so they appear as follows:
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider
security.provider.7=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.8=sun.security.smartcardio.SunPCSC
security.provider.9=com.safenetinc.luna.provider.LunaProvider

3. Save the changes to the java.security file.

Enabling the HSM on Demand Service keystore
You must configure the Java Code Signing utility to use the keystore located on the HSM on Demand Service.

To enable the HSM on Demand Service keystore

1. Copy the LunaAPI.dll (Windows) or the libLunaAPI.so (UNIX) and the LunaProvider.jar files from the
<Luna_installation_directory>/jsp/lib to the Java extension folder located at <JDK_installation_

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 10



Integrating Java Code Signing with an HSM on Demand Service

directory>/jre/lib/ext.
2. Set the environment variables for JAVA_HOMEand PATH.

# export JAVA_HOME=<JDK_installation_directory>
# export PATH=$JAVA_HOME/bin:$PATH

NOTE We recommend setting the PATH variable in Windows environments using the
System Environments menu.

3. Create a file called lunastore and add the following line:
tokenlabel:<service_label>

Acquire encryption keys for signing the .jar file
There are two methods for acquiring the encryption key on the HSM on Demand Service for signing the .jar
files. You can migrate an existing keystore into the HSM on Demand Service, or generate a new keypair for use
on the HSM on Demand Service..

Migrating the JKS keystore for signing the .jar file
If the JKS keystore is already in use, you can migrate the keys from the JKS keystore to the HSM on Demand
Service to better secure the encryption keys. The following procedure details the steps required to migrate
signing keys from the JKS local keystore to the keystore on the HSM on Demand Service.

To migrate the JKS keystore for signing the .jar file

1. Migrate the JKS keystore into the <product>.

# keytool –importkeystore –srckeystore <source_key_store> –destkeystore lunastore –
srcstoretype jks –deststoretype luna
Respond to the prompts from the system to complete the migration.

2. Verify the contents of the lunastore.

# keytool –list –v –keystore lunastore –storetype luna

Generating the encryption key for signing the .jar file
You can generate a new keypair directly on the HSM on Demand Service keystore.

To generate the encryption key for signing the .jar file

1. Generate a keypair using the Java keystore utility and respond to the prompts to configure the keypair.

# keytool –genkeypair –alias <key_label> –keyalg RSA –sigalg SHA256withRSA –keypass <key_
password> -keysize 2048 –keystore lunastore –storepass <HSMoD_password> -storetype luna
When you complete the process, a new key pair will be generated on the registered HSM on Demand
Service.

2. Verify that the private key exists on the HSM on Demand Service.

# keytool –list –v –storetype luna –keystore lunastore

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 11



Integrating Java Code Signing with an HSM on Demand Service

The system will prompt the user to enter the keystore password. This is the password for the HSM on
Demand Service. On correct entry, it will display the existing keys.

3. Generate a certificate request from the private key in the keystore.

# keytool –certreq –alias <key_label> –sigalg SHA256withRSA –file<cert_request_file> –storetype
luna –keystore lunastore.
The system will prompt the user to enter the keystore password. This is the password for the HSM on
Demand Service.

4. Deliver the CSR file to your local Certification Authority (CA). Request the CA authenticates the request and
returns a signed certificate or certificate chain. Save the reply and the CA root certificate in the current
working directory.

5. Import the CA root certificate into the keystore.

# keytool –trustcacerts –importcert –alias rootca –file <root_certificate> –keystore lunastore –
storetype luna

6. Import the signed certificate reply, or certificate chain, into the keystore.

# keytool –trustcacerts –importcert –alias <key_label> –file <certificate_file_or_chain> -keystore
lunastore –storetype luna

7. Verify the files exist in the keystore.

# keytool –list –v –storetype luna –keystore lunastore

NOTE Ensure you keep a record of the location of your keystore file following the
creation of the CSR. You will need this location as it contains your private key, and it will
be needed when you install the Code Signing Certificate.

Signing the .jar file
You can sign the .jar files using the encryption keys stored in the HSM on Demand Service keystore.

To sign the .jar file

1. Move the *.jar file inside the current working directory.
2. Sign the *.jar file. Execute:

# jarsigner –keystore lunastore –storetype luna –signedjar <signed_jar_to_be_generated> <jar_to_
be_signed> <private_key_label> -tsa <time_stamping_URL>
On correct execution, the system will prompt the user to enter the keystore password. This is the password
for the HSM on Demand Service.

3. Verify the signed *.jar file.
# jarsigner –verify <signed_jar_file> -verbose –certs
If the .jar file is verified, a message similar to the following is returned.
S     565 Tue Apr 17 09:42:36 PDT 2018 META-INF/MANIFEST.MF

[entry was signed on 4/16/18 9:12 PM]
X.509, CN=Administrator, CN=Users, DC=hlk, DC=com

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 12



Integrating Java Code Signing with an HSM on Demand Service

[certificate is valid from 4/16/18 12:02 PM to 4/16/19 12:02 PM]
X.509, CN=hlk-CA, DC=hlk, DC=com
[certificate is valid from 4/5/18 10:25 AM to 4/5/23 10:35 AM]
647 Tue Apr 17 09:42:36 PDT 2018 META-INF/LUNAKEY.SF
5869 Tue Apr 17 09:42:36 PDT 2018 META-INF/LUNAKEY.RSA
0 Thu Dec 02 10:41:40 PST 2010 META-INF/

m 506 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$1.class
m 533 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$2.class
m 1567 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$3.class
m 3905 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer.class
s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore
i = at least one certificate was found in identity scope
-Signed by "CN=Administrator, CN=Users, DC=hlk, DC=com"
Digest algorithm : SHA256
Signature algorithm : SHA256withRSA, 2048-bit key
Timestamped by “CN=GlobalSign TSA for Standard – G2, O=GMO GlobalSign Pte Ltd, C=SG” on Tue
Apr 17 04:12:52 UTC 2018
Timestamp digest algorithm: SHA-256
Timestamp signature algorithm: SHA1withRSA, 2048-bit key
Jar verified.

HSMoD Service 1.7 Java Code Signer Integration Guide
007-013897-001 21 November 2018 Copyright 2018Gemalto 13


	Overview
	Third Party Application Details
	Supported Platforms

	Preparing for the Integration
	Provision the HSMoD Service
	Adding a Service
	Adding a Service Client
	Initializing the HSM
	Constraints on HSMoD Services


	Integrating Java Code Signing with an HSM on Demand Service
	Configuring the java.security file
	Enabling the HSM on Demand Service keystore
	Acquire encryption keys for signing the .jar file
	Signing the .jar file


