

Oracle Database with PSE
Integration Guide

Oracle Database Integration Guide with PSE 2

All information herein is either public information or is the property of and owned solely by Gemalto and/or its

subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual

property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under

any intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal and personal use only provided that:

 The copyright notice below, the confidentiality and proprietary legend and this full warning notice appear in

all copies.

 This document shall not be posted on any publicly accessible network computer or broadcast in any media

and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS" without any warranty of any kind. Unless

otherwise expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information

contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to

the information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the

specifications data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein,

including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In

no event shall Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or consequential

damages or any damages whatsoever including but not limited to damages resulting from loss of use, data,

profits, revenues, or customers, arising out of or in connection with the use or performance of information

contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not

incur, and disclaims, any liability in this respect. Even if each product is compliant with current security

standards in force on the date of their design, security mechanisms' resistance necessarily evolves according to

the state of the art in security and notably under the emergence of new attacks. Under no circumstances, shall

Gemalto be held liable for any third party actions and in particular in case of any successful attack against

systems or equipment incorporating Gemalto products. Gemalto disclaims any liability with respect to security

for direct, indirect, incidental or consequential damages that result from any use of its products. It is further

stressed that independent testing and verification by the person using the product is particularly encouraged,

especially in any application in which defective, incorrect or insecure functioning could result in damage to

persons or property, denial of service or loss of privacy.

© 2012-18 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks of

Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and service marks,

whether registered or not in specific countries, are the property of their respective owners.

Document Number: 007-012150-001, Rev. B

Release Date: May 2018

Contents

Oracle Database Integration Guide with PSE 3

Contents

Preface .. 4

Scope .. 4

Document Conventions .. 4

Command Syntax and Typeface Conventions ... 5

Support Contacts .. 6

1 Introduction .. 7

Overview ... 7

3rd Party Application Details .. 7

Supported Platforms ... 8

Prerequisites ... 8

Protect Server External Setup: ... 8

Oracle Database Setup .. 10

2 Integrating PSE with Oracle Database 12c .. 11

Setting up PSE for Transparent Data Encryption ... 11

Generating a Master Encryption Key for HSM-Based Encryption .. 12

Migrating Master Encryption Key onto the HSM .. 12

Working with Pluggable Databases (PDB) ... 19

About Containers in a CDB .. 19

Managing Pluggable Databases .. 19

3 Integrating PSE with Oracle Database 11g R2 .. 23

Setting up PSE for Transparent Data Encryption ... 23

Generating a Master Encryption Key for HSM-Based Encryption .. 24

Migrating Master Encryption Key onto the HSM .. 24

4 Troubleshooting Tips .. 28

Preface

Oracle Database Integration Guide with PSE 4

Preface

This document is intended to guide security administrators through the steps for the Oracle Database and

Protect Server External (PSE) integration.

Scope

This document outlines the steps to integrate Oracle Database with PSE. PSE is used to secure the Master

Encryption Key for Oracle TDE in FIPS 140-2 Approved HSM.

Document Conventions

This section provides information on the conventions used in this template.

Notes

Notes are used to alert you to important or helpful information. These elements use the following format:

NOTE: Take note. Contains important or helpful information.

Cautions

Cautions are used to alert you to important information that may help prevent unexpected results or data loss.

These elements use the following format:

CAUTION: Exercise caution. Caution alerts contain important information that may

help prevent unexpected results or data loss.

Warnings

Warnings are used to alert you to the potential for catastrophic data loss or personal injury. These elements use

the following format:

WARNING: Be extremely careful and obey all safety and security measures. In

this situation you might do something that could result in catastrophic data loss or

personal injury.

Preface

Oracle Database Integration Guide with PSE 5

Command Syntax and Typeface Conventions

Convention Description

bold The bold attribute is used to indicate the following:

 Command-line commands and options (Type dir /p.)

 Button names (Click Save As.)

 Check box and radio button names (Select the Print Duplex check box.)

 Window titles (On the Protect Document window, click Yes.)

 Field names (User Name: Enter the name of the user.)

 Menu names (On the File menu, click Save.) (Click Menu > Go To > Folders.)

 User input (In the Date box, type April 1.)

italic The italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

Consolas Denotes syntax, prompts, and code examples.

Preface

Oracle Database Integration Guide with PSE 6

Support Contacts

Contact Method Contact Information

Address Gemalto

4690 Millennium Drive

Belcamp, Maryland 21017, USA

Phone US 1-800-545-6608

International 1-410-931-7520

Technical Support
Customer Portal

https://supportportal.gemalto.com

Existing customers with a Technical Support Customer Portal account can log in to
manage incidents, get the latest software upgrades, and access the Gemalto Knowledge
Base.

https://supportportal.gemalto.com/

 1 – Introduction

Oracle Database Integration Guide with PSE 7

1
Introduction

Overview

This guide provides the necessary information to install, configure and integrate Oracle Database Transparent
Data Encryption (TDE) with SafeNet PSE Hardware Security Module (HSM).

TDE provides the infrastructure necessary for implementing encryption. It enables to encrypt sensitive data

stored in application table columns (such as credit card numbers etc.) or application table spaces, the

containers for all objects stored in a database TDE prevents data theft of confidential data stored on media. The

motivation for the Oracle TDE to use the PSE HSM for EKM is because of the following reasons:

 It is used to store the master encryption keys used for transparent data encryption. And the master

encryption key is never exposed in insecure memory.

 It also provides more secure computational storage.

 PSE is a more secure alternative to the Oracle wallet.

3rd Party Application Details

 Oracle Database 12c R2

 Oracle Database 11g R2

 1 – Introduction

Oracle Database Integration Guide with PSE 8

Supported Platforms

The following platforms are tested with PSE:

Oracle Database 12c R2 version: 12.2.0.1

Platforms Tested Firmware Version Distribution

Solaris Sparc 11 64-bit 5.02.00 PSE 5.5.0

Oracle Database 11g R2 version: 11.2.0.3

Platforms Tested Firmware Version Distribution

Aix 6.1 64-bit

3.20.01

PSE v4.2.0

PSE v4.2.1

Prerequisites

Protect Server External Setup:
 Set AC Switch to 230v.

 Connect PS/2 Keyboard.

 Connect VGA screen.

 Connect power cable.

 At login prompt, PSE version was reported as 1.1.0 DOM.

 Logged in as root user, password = password.

 Run passwd command to change the root password to the company usual.

 Run hsmstate which responded with NORMAL MODE. RESPONDING.

 Run cat /etc/sysconfig/network-scripts/ifcfg-eth0.

 Open the file /etc/sysconfig/network-scripts/ifcfg-eth0 to change the IP Address of the PSE according to

your network configuration.

 Restart the network using /etc/init.d/network restart.

 Run iptables -L to find that all chains had their default policy set to ACCEPT.

 Run cat /etc/issue which contains Protect Server External 1.1.0 DOM.

ProtectToolkit C installation on Solaris Sparc

 Install SafeNet Network HSM Access Provider 5.5.0.

 1 – Introduction

Oracle Database Integration Guide with PSE 9

 Install SafeNet ProtectToolkit C SDK 5.5.0.

By default PTK is installed in S/W mode to change it in HSM mode following steps needs to be followed:

 Go to /etc/defult/ open file et_hsm modify it to include IP address of HSM, by default loopback address is

configured in this file.

 Create following soft link:

ln -s /opt/safenet/protecttoolkit5/cpsdk/lib/sparc/sparcv9/libcthsm.so

/opt/safenet/protecttoolkit5/ptk/lib/sparcv9/libcryptoki.so

 Now execute hsmstate, it displays HSM info.

HSM device 0: HSM in NORMAL MODE. RESPONDING. Usage Level=0%

 Initialize the HSM using ctkmu.

root@hsm-solaris-sparc11:/opt/safenet/protecttoolkit5/ptk/bin# ctkmu t -s6
ProtectToolkit C Key Management Utility 5.5.0
Copyright (c) Safenet, Inc. 2009-2017

Enter the new token label: Oracle

Please enter Security Officer PIN for the new token in Slot 6:
Please confirm Security Officer PIN for the new token in Slot 6:
Initializing token in Slot 6:
Setting user pin for new token in slot 6:
Please enter User's PIN for the new token in slot 6:
Please confirm User's PIN for the new token in slot 6:

NOTE: Enter token label and set the PIN for the respective slot which will be

later used for this integration.

root@hsm-solaris-sparc11:/opt/safenet/protecttoolkit5/ptk/bin# ctkmu l
ProtectToolkit C Key Management Utility 5.5.0
Copyright (c) Safenet, Inc. 2009-2017
Cryptoki Version = 2.20
Manufacturer = Safenet, Inc.
test (Slot 0)
Aamir (Slot 1)
MACHINE_Keyset (Slot 2)
SYSTEM_Keyset (Slot 3)
DEVSHARM_Keyset (Slot 4)
test (Slot 5)
Oracle (Slot 6)
<uninitialised token> (Slot 7)
<uninitialised token> (Slot 8)
<uninitialised token> (Slot 9)
AdminToken (527012) (Slot 10)
root@hsm-solaris-sparc11:/opt/safenet/protecttoolkit5/ptk/bin#

root@hsm-solaris-sparc11:/opt/safenet/protecttoolkit5/ptk/bin# ctconf -ft
ProtectToolkit C Configuration Utility 5.5.0
Copyright (c) Safenet, Inc. 2009-2017
At least 1 other application is still running.
Security Mode has not been set.
root@hsm-solaris-sparc11:/opt/safenet/protecttoolkit5/ptk/bin#

 1 – Introduction

Oracle Database Integration Guide with PSE 10

Controlling User Access to the HSM

By default, only the root user has access to the HSM. You can specify a set of non-root users that are permitted

to access the HSM, by providing the access of libcthsm.so and libetnetclient.so.

Providing access of library for Non-Root user

To allow non-root users or applications access to the HSM, change the ownership of libcthsm.so and

libetnetclient.so and change the permission of respective library.

Changing the ownership and permission of library

Ensure that you have sudo privileges on the client workstation.

a. Changing the ownership of library for Non-root user

chown -R oracle:oinstall /opt/safenet/protecttoolkit5/cpsdk/lib/sparc/sparcv9/libcthsm.so

chown -R oracle:oinstall

/opt/safenet/protecttoolkit5/nethsm/lib/sparc/sparcv9/libetnetclient.so

b. Changing the permission of library for Non-root user

chown -R oracle:oinstall /opt/safenet/protecttoolkit5/cpsdk/lib/sparc/sparcv9/libcthsm.so

chmod -R 755 /opt/safenet/protecttoolkit5/cpsdk/lib/sparc/sparcv9/libcthsm.so

chown -R oracle:oinstall
/opt/safenet/protecttoolkit5/nethsm/lib/sparc/sparcv9/libetnetclient.so

chmod -R 755 /opt/safenet/protecttoolkit5/nethsm/lib/sparc/sparcv9/libetnetclient.so

Oracle Database Setup

Oracle Database must be installed on the target machine to carry on with the integration process. For a detailed
installation procedure of Oracle Database, refer to the Oracle Database Documentation.

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 11

2
Integrating PSE with Oracle Database 12c

Setting up PSE for Transparent Data Encryption

To set up PSE for Transparent Data Encryption, perform the following steps:

Create a soft Link PSE PKCS#11 library to the specified directory structure to ensure that the oracle database is
able to find this library. Use the following directory structure:

"/opt/oracle/extapi/[32,64]/hsm/{Vendor}/{Version}/" (Solaris Sparc)

For example,
/opt/oracle/extapi/64/hsm/safenet/5.5.0/

Where:

 [32, 64] specifies whether the supplied binary is 32-bits or 64-bits.

 Vendor stands for the name of the vendor supplying the library.

 Version refers to the version of the library. This should preferably be in the below format:

number.number.number

The API name requires no special format. However, the XX must be prefixed with the word lib, as
illustrated in the syntax. The extension, ext needs to be replaced by the extension of the library file.

After creating above directory structure create following soft link:

ln -s /opt/safenet/protecttoolkit5/cpsdk/lib/sparc/sparcv9/libcthsm.so
/opt/oracle/extapi/64/hsm/safenet/5.5.0/libcryptoki.so

NOTE: Only one PKCS#11 library is supported at a time.

Oracle user should have the read/write permission of the above directory and file.

Login as an Oracle user to export the following variables:

export ORACLE_SID=orcl
export ORACLE_BASE=/u01/app/oracle (oracle installation directory)
export ORACLE_HOME=$ORACLE_BASE/product/12.2.0/dbhome_1
export PATH=$PATH:$ORACLE_HOME/bin
export TNS_ADMIN=$ORACLE_HOME/network/admin

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 12

Generating a Master Encryption Key for HSM-Based
Encryption

To start using HSM-based encryption, you need to have a master encryption key that will be stored inside the
HSM. The master encryption key is used to encrypt or decrypt column/tablespace encryption keys inside the
HSM. HSM can be used in the following ways to protect the Master Encryption Key:

 An existing Unified Master Encryption Key can be migrated onto the HSM.

 A Unified Master Encryption Key can be directly generated onto the HSM.

 HSM Auto-Login wallet use for TDE.

Migrating Master Encryption Key onto the HSM

In order to migrate a Master Encryption Key for HSM-Based Encryption, perform the following steps:

NOTE: It is assumed that no software-based wallet is yet created in the directory

you would specify to create one.

To test TDE with PSE, perform the following steps:

Verify that the 'traditional' software-based wallet is working fine:

1. Add the following to your "$ORACLE_HOME/network/admin/sqlnet.ora" file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY = <path to the
oracle wallet directory>)))

2. Start the database:

$ sqlplus / as sysdba

If the database is not yet started, you can start it using:

SQL> startup;

3. Grant ADMINISTER KEY MANAGEMENT or SYSKM privilege to SYSTEM and any user that you want to
use.

SQL> GRANT ADMINISTER KEY MANAGEMENT TO SYSTEM;

SQL> commit;

4. Connect to the database as 'system':

SQL> connect system/<password>

NOTE: Password for 'system' can be set during Oracle installation. All

dbapasswords throughout this document has been set to "temp123#".

5. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the keystore.

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'keystore_location' IDENTIFIED BY
software_keystore_password;

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 13

NOTE: 'keystore_location' is the path to oracle wallet directory that you set in the

sqlnet.ora file and 'software_keystore_password' must have length more than

or equal to 8 characters.

6. Run the ADMINISTER KEY MANAGEMENT SQL statement to open the keystore.

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY software_keystore_password;

7. Set the master encryption key in the software keystore.

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY software_keystore_password WITH BACKUP
USING 'backup_identifier';

NOTE: WITH BACKUP creates a backup of the keystore. You must use this

option for password based keystores. Optionally, you can use the USING clause

to add a brief description of the backup. Enclose this description in single

quotation marks (' '). This identifier is appended to the named keystore file (for

example, ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup

being the backup identifier).

8. Create a CUSTOMERS table in the database.

SQL> CREATE TABLE CUSTOMERS (ID NUMBER(5), NAME VARCHAR(42), CREDIT_LIMIT NUMBER(10));

9. Enter some values in the CUSTOMERS table.

SQL> INSERT INTO CUSTOMERS VALUES (001, 'George Bailey', 10000);

SQL> INSERT INTO CUSTOMERS VALUES (002, 'Denial Vettory', 20000);

SQL> INSERT INTO CUSTOMERS VALUES (003, 'MS Dhoni', 30000);

SQL> INSERT INTO CUSTOMERS VALUES (004, 'Shahid Afridi', 40000);

10. Encrypt the 'CREDIT_LIMIT' column of the 'CUSTOMERS' table:

SQL> ALTER TABLE CUSTOMERS MODIFY (CREDIT_LIMIT ENCRYPT);

11. With the next command, the values listed in the encrypted column are returned in clear text; Transparent
Data Encryption decrypts them automatically:

SQL> SELECT CREDIT_LIMIT FROM CUSTOMERS;

12. The following command lists encrypted columns in your database:

SQL> SELECT * FROM DBA_ENCRYPTED_COLUMNS;

13. The keystore view contains information about the software keystore:

SQL> SELECT * FROM V$ENCRYPTION_WALLET;

14. Create an encrypted tablespace:

SQL> CREATE TABLESPACE SECURESPACE DATAFILE '/u01/app/oracle/oradata/orcl/SECURE01.DBF' SIZE
150M ENCRYPTION DEFAULT STORAGE (ENCRYPT);

15. Create a table in the tablespace:

SQL> CREATE TABLE EMPLOYEE (ID NUMBER(5),NAME VARCHAR(42),SALARY NUMBER(10)) TABLESPACE
SECURESPACE;

16. Insert some values in EMPLOYEE table:

SQL> INSERT INTO EMPLOYEE VALUES (001,'JOHN SMITH',15000);

SQL> INSERT INTO EMPLOYEE VALUES (002,'SCOTT TIGER',25000);

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 14

SQL> INSERT INTO EMPLOYEE VALUES (003,'DIANA HAYDEN',35000);

17. Display the contents of the EMPLOYEE table with the following command:

SQL> SELECT * FROM EMPLOYEE;

18. Close the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY software_keystore_password;

19. After closing the keystore execute the command to display the contents again:

SQL> SELECT * FROM EMPLOYEE;

You will get the following error that means you cannot list the contents of EMPLOYEE table, if keystore is
closed.

ERROR at line 1: ORA-28365: wallet is not open

20. Open the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY software_keystore_password;

SQL> exit

Test if the database can reach the HSM device:

1. Change your "$ORACLE_HOME/network/admin/sqlnet.ora" – file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM) (METHOD_DATA =(DIRECTORY = <path to the
oracle wallet directory>)))

2. $ sqlplus / as sysdba

Connect to the database as 'system':

SQL> connect system/<password>

3. Migrate the wallet onto the HSM device:

SQL> ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "hsm_partition_pwd" MIGRATE
USING software_keystore_password WITH BACKUP USING 'backup_identifier';

NOTE: "hsm_partition_pwd" is the password for the HSM partition where the

Master Encryption Key would be generated. The migrate using

software_keystore_password string re-encrypts the Transparent Data Encryption

column keys and tablespace keys with the new HSM based master key. The

software_keystore_password is the password given the software wallet in step 1.

4. With the following command, the values listed in the encrypted column are returned in clear text.
Transparent Data Encryption decrypts them automatically using the HSM master key:

SQL> SELECT CREDIT_LIMIT FROM CUSTOMERS;

5. Change the password of software keystore to same as HSM partition password. Ensure that the software
wallet is open.

SQL> ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD IDENTIFIED BY software_keystore_password
SET hsm_partition_pwd WITH BACKUP USING 'backup_identifier';

From now onwards when you open the keystore, it will open both software-based keystore as well as HSM-
based keystore

6. Close the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "hsm_partition_pwd";

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 15

7. Open the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_pwd";

This opens both the HSM and the software keystore.

8. Check the wallet information with the following command:

SQL> SELECT * FROM V$ENCRYPTION_WALLET;

9. Change the password back to the initial password for software based wallet (if you want to do) and use the
following syntax to create an auto-login keystore for a software keystore:

SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE 'keystore_location'
IDENTIFIED BY software_keystore_password;

To use the auto-login wallet only on local system use LOCAL AUTO_LOGIN instead of AUTO_LOGIN.

10. Verify that an auto-open software keystore has been created in the oracle wallet directory you specified in
the sqlnet.ora file: You will find two wallets in this directory: "ewallet.p12" and "cwallet.sso"; the latter is the
auto-open wallet. Move or rename the encryption wallet to ensure that oracle uses auto-open wallet.

mv ewallet.p12 ewallet.p24

11. Restart the database and connect to the database as system and open the HSM keystore(software wallet
will open automatically):

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_pwd";

Create HSM Auto Wallet when HSM and Auto-Open Software wallet is in use:

1. Change the sqlnet.ora entries as follows:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
/etc/oracle/wallet)))

2. Rename or move the Auto-Open wallet from the location mentioned in the sqlnet.ora file and move or
rename the encryption wallet in to the wallet directory.

mv ewallet.p24 ewallet.p12

3. Restart the database and connect as a system.

4. Open the software keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY software_keystore_password;

5. Add the HSM secret as a client.

SQL> ADMINISTER KEY MANAGEMENT ADD SECRET 'hsm_partition_password' FOR CLIENT 'HSM_PASSWORD'
IDENTIFIED BY software_keystore_password WITH BACKUP USING 'backup_identifier';

NOTE: The secret is the hardware security module password and the client is

the HSM_PASSWORD. HSM_PASSWORD is an Oracle-defined client name

that is used to represent the HSM password as a secret in the software keystore.

6. Close the software keystore.

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY software_keystore_password;

7. Create (or recreate) Auto-Login keystore.

SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE 'keystore_location'
IDENTIFIED BY software_keystore_password;

8. Update the sqlnet.ora file to use the hardware security module.

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 16

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM) (METHOD_DATA = (DIRECTORY =
/etc/oracle/wallet)))

9. Restart the database and connect as a system.

10. Check the wallet information with the following command:

SQL> SELECT * FROM V$ENCRYPTION_WALLET;

Generating Master Encryption Key directly onto the HSM

In order to generate a Master Encryption Key for HSM-Based Encryption, perform the following instructions:

NOTE: It is assumed that no software or HSM based wallet is yet created.

Setting up Oracle to create Master Encryption Key onto HSM:

1. Add the following to your "$ORACLE_HOME/network/admin/sqlnet.ora" – file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM))

2. Start the database:

$ sqlplus / as sysdba

If the database is not yet started, you can start it using:

SQL> startup;

3. Grant ADMINISTER KEY MANAGEMENT or SYSKM privilege to SYSTEM and any user that you want to
use.

SQL> GRANT ADMINISTER KEY MANAGEMENT TO SYSTEM;

SQL> commit;

4. Connect to the database as 'system':

SQL> connect system/<password>

NOTE: Password for 'system' can be set during Oracle installation. All

dbapasswords throughout this document has been set to "temp123#".

5. Run the ADMINISTER KEY MANAGEMENT SQL statement to open the HSM keystore.

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_password";

6. Set the master encryption key in the software keystore.

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "hsm_partition_password";

You can see the HSM partition contents to verify the generated keys on HSM, below is the
snapshot of HSM partition contents:

--

ORACLE.TSE.HSM.MK.072AC159D9153C4FF0BF3BF931ED9693850203 – SECRET_KEY AES
ORACLE.SECURITY.KM.ENCRYPTION.3036363132383641384337313836344632414246373839314430343431353
4443941 – DATA RSA

--

7. Create a CUSTOMERS table in the database.

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 17

SQL> CREATE TABLE CUSTOMERS (ID NUMBER(5), NAME VARCHAR(42), CREDIT_LIMIT NUMBER(10));

8. Enter some values in the CUSTOMERS table.

SQL> INSERT INTO CUSTOMERS VALUES (001, 'George Bailey', 10000);

SQL> INSERT INTO CUSTOMERS VALUES (002, 'Denial Vettory', 20000);

SQL> INSERT INTO CUSTOMERS VALUES (003, 'MS Dhoni', 30000);

SQL> INSERT INTO CUSTOMERS VALUES (004, 'Shahid Afridi', 40000);

9. Encrypt the 'CREDIT_LIMIT' column of the 'CUSTOMERS' table:

SQL> ALTER TABLE CUSTOMERS MODIFY (CREDIT_LIMIT ENCRYPT);

10. With the next command, the values listed in the encrypted column are returned in clear text; Transparent
Data Encryption decrypts them automatically:

SQL> SELECT CREDIT_LIMIT FROM CUSTOMERS;

11. The following command lists encrypted columns in your database:

SQL> SELECT * FROM DBA_ENCRYPTED_COLUMNS;

12. Finally, this view contains information about the software keystore itself:

SQL> SELECT * FROM V$ENCRYPTION_WALLET;

13. Create an encrypted tablespace:

SQL> CREATE TABLESPACE SECURESPACE DATAFILE '/u01/app/oracle/oradata/orcl/SECURE01.DBF' SIZE
150M ENCRYPTION DEFAULT STORAGE (ENCRYPT);

14. Create a table in the tablespace:

SQL> CREATE TABLE EMPLOYEE (ID NUMBER(5),NAME VARCHAR(42),SALARY NUMBER(10)) TABLESPACE
SECURESPACE;

15. Insert some values in EMPLOYEE table:

SQL> INSERT INTO EMPLOYEE VALUES (001,'JOHN SMITH',15000);

SQL> INSERT INTO EMPLOYEE VALUES (002,'SCOTT TIGER',25000);

SQL> INSERT INTO EMPLOYEE VALUES (003,'DIANA HAYDEN',35000);

16. Display the contents of the EMPLOYEE table with the following command:

SQL> SELECT * FROM EMPLOYEE;

17. Close the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "hsm_partition_password";

18. After closing the keystore execute the command to display the contents again:

SQL> SELECT * FROM EMPLOYEE;

You will get the following error that means you cannot list the contents of EMPLOYEE table, if keystore is
closed.

ERROR at line 1:

ORA-28365: wallet is not open

19. Open the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_password";

SQL> exit

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 18

Create HSM Auto Wallet

20. Close the hardware security module if it is open.

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "hsm_partition_password";

21. Change the sqlnet.ora entries as follows:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
/etc/oracle/wallet)))

22. Create the software keystore in the appropriate location (for example, "/etc/oracle/wallet").

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/oracle/wallet' IDENTIFIED BY
software_keystore_password;

23. Open the software keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY software_keystore_password;

24. Add the HSM password as a client.

SQL> ADMINISTER KEY MANAGEMENT ADD SECRET 'hsm_partition_password' FOR CLIENT 'HSM_PASSWORD'
IDENTIFIED BY software_keystore_password WITH BACKUP USING 'backup_identifier';

25. Close the software keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY software_keystore_password;

26. Create Auto-Login keystore.

SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE '/etc/oracle/wallet'
IDENTIFIED BY software_keystore_password;

27. Update the sqlnet.ora file to use the hardware security module.

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM) (METHOD_DATA = (DIRECTORY =
/etc/oracle/wallet)))

At this stage, close the database and open it one more time and the next time when a TDE operation
executes, the hardware security module auto-login keystore opens automatically.

28. Restart the database and connect as a system.

29. Check the wallet information with the following command:

SQL> SELECT * FROM V$ENCRYPTION_WALLET;

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 19

Working with Pluggable Databases (PDB)

A new feature for Oracle Database 12c is Multitenant Architecture, Oracle Multitenant delivers a new

architecture that allows a multitenant container database to hold many pluggable databases. The multitenant

architecture enables an Oracle database to function as a multitenant container database (CDB) that includes

zero, one, or many customer-created pluggable databases (PDBs). A PDB is a portable collection of schemas,

schema objects, and non-schema objects that appears to an Oracle Net client as a non-CDB. All Oracle

databases before Oracle Database 12c were non-CDBs.

About Containers in a CDB

A container is either a PDB or the root container (also called the root). The root is a collection of schemas,

schema objects, and non-schema objects to which all PDBs belong. Every CDB has the following containers:

Exactly one root:

The root stores Oracle-supplied metadata and common users. A common user is a database user known in

every container. The root container is named CDB$ROOT.

Exactly one seed PDB:

The seed PDB is a system-supplied template that the CDB can use to create new PDBs. The seed PDB is

named PDB$SEED. You cannot add or modify objects in PDB$SEED.

Zero or more user-created PDBs:

A PDB is a user-created entity that contains the data and code required for a specific set of features. For

example, a PDB can support a specific application, such as a human resources or sales application. No PDBs

exist at creation of the CDB. You add PDBs based on your business requirements.

Managing Pluggable Databases

Purpose of PDBs

You can use PDBs to achieve the following goals:

1. Store data specific to a particular application.

For example, a sales application can have its own dedicated PDB, and a human resources application can
have its own dedicated PDB.

2. Move data into a different CDB.

A database is "pluggable" because you can package it as a self-contained unit, and then move it into
another CDB.

3. Isolate grants within PDBs.

A local or common user with appropriate privileges can grant EXECUTE privileges on a package to PUBLIC
within an individual PDB.

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 20

There are several ways to create a PDB but the most preferred one is to use DBCA utility. It is assumed that

you have already created PDBs. For demonstrated purpose in this guide we are using the PDB with named

"salespdb".

TDE in Pluggable Databases

Below are the steps to use TDE with Pluggable Databses:

1. Edit the tnsnames.ora file to add a new service for the newly created PDB. By default, the tnsnames.ora file
is located in the "ORACLE_HOME/network/admin" directory or in the location set by the TNS_ADMIN
environment variable. Ensure that you have properly set the TNS_ADMIN environment variable to point to
the correct tnsnames.ora file.

For Example:

salespdb =

(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = salespdb.localdomain)
)

)

Where, salespdb is the new Pluggable database name.

2. Restart the Listener Service.

lsnrctl stop

lsnrctl start

3. Start the sqlplus session to connect to PDB.

$ sqlplus / as sysdba

SQL> alter pluggable database all open read write;

Pluggable database altered.

SQL> Connect system/<system_password>@Pluggable Database Service name

For Example:

SQL> connect system/temp123#@salespdb;

4. Run the below grant commands to PDB Admin:

SQL> GRANT ADMINISTER KEY MANAGEMENT TO salesadm;

Grant succeeded.

SQL> GRANT CREATE SESSION TO salesadm;

Grant succeeded.

SQL> GRANT CONNECT TO salesadm;

Grant succeeded.

SQL> GRANT DBA TO salesadm;

Grant succeeded.

SQL> GRANT CREATE ANY TABLE TO salesadm;

Grant succeeded.

SQL> GRANT UNLIMITED TABLESPACE TO salesadm;

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 21

Grant succeeded.

SQL> ALTER USER salesadm PROFILE DEFAULT;

User altered.

SQL> commit;

Commit complete.

Where, salesadm is the administrative user name created at the time of creating PDB.

5. Try connecting to PDB with PDB username and you should be able to connect it:

SQL> Connect pdbuser/<system_password>@Pluggable Database Service name

For Example:

SQL> connect salesadm/temp123#@salespdb

Connected.

Generating TDE Master Encryption Key for PDB

1. Add the following to your "$ORACLE_HOME/network/admin/sqlnet.ora" – file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM))

2. Start the sqlplus session to connect to PDB.

sqlplus / as sysdba

SQL> Connect <pdb_admin>/<pdb_admin_password>@Pluggable Database Service name

For Example:

SQL> connect salesadm/temp123#@salespdb

Connected

3. Run the ADMINISTER KEY MANAGEMENT SQL statement using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_password";

For example:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "userpin2";

keystore altered.

NOTE: Please make sure that keystore for CDB (root container) is opened and

Master key for CDB is generated before opening the keystore and generating the

Master key for PDB.Also do not configure HSM auto login for CDB until you

generate the master key for PDB (all PDB in case multiple PDB are using the

TDE). After generating the Master key for all PDBs you can configure the CDB

for auto login and it will work for all PDBs as well.

4. Run the following SQL statement to create the PDB Master key:

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "hsm_partition_password";

For example:

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "userpin2";

keystore altered.

2 – Integrating PSE with Oracle Database 12c

Oracle Database Integration Guide with PSE 22

NOTE: This will generate a new master key and from now onwards any

encryption/decryption operations performed within this pdb will use this master

key.

5. Create a CUSTOMERS table in the PDB.

SQL> CREATE TABLE CUSTOMERS (ID NUMBER(5), NAME VARCHAR(42), CREDIT_LIMIT NUMBER(10));

6. Enter some values in the CUSTOMERS table.

SQL> INSERT INTO CUSTOMERS VALUES (001, 'George Bailey', 10000);

SQL> INSERT INTO CUSTOMERS VALUES (002, 'Denial Vettory', 20000);

7. Encrypt the 'CREDIT_LIMIT' column of the 'CUSTOMERS' table:

SQL> ALTER TABLE CUSTOMERS MODIFY (CREDIT_LIMIT ENCRYPT);

8. With the next command, the values listed in the encrypted column are returned in clear text; Transparent
Data Encryption decrypts them automatically:

SQL> SELECT CREDIT_LIMIT FROM CUSTOMERS;

9. The following command lists encrypted columns in your databases:

SQL> SELECT * FROM DBA_ENCRYPTED_COLUMNS;

10. Create an encrypted tablespace:

SQL> CREATE TABLESPACE SECURESPACE DATAFILE '/u01/app/oracle/oradata/orcl/salespdb/SECURE01.DBF'
SIZE 150M ENCRYPTION DEFAULT STORAGE (ENCRYPT);

11. Create a table in the tablespace:

SQL> CREATE TABLE EMPLOYEE (ID NUMBER(5),NAME VARCHAR(42),SALARY NUMBER(10)) TABLESPACE
SECURESPACE;

12. Insert some values in EMPLOYEE table:

SQL> INSERT INTO EMPLOYEE VALUES (001,'JOHN SMITH',15000);

SQL> INSERT INTO EMPLOYEE VALUES (002,'SCOTT TIGER',25000);

SQL> INSERT INTO EMPLOYEE VALUES (003,'DIANA HAYDEN',35000);

13. Display the contents of the EMPLOYEE table with the following command:

SQL> SELECT * FROM EMPLOYEE;

14. Close the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "hsm_partition_password";

15. After closing the keystore execute the command to display the contents again:

SQL> SELECT * FROM EMPLOYEE;

You will get the following error that means you cannot list the contents of EMPLOYEE table, if keystore is
closed.

ERROR at line 1:

ORA-28365: wallet is not open

16. Open the keystore:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "hsm_partition_password";

The above queries are same as we did for root container but it will use the Master Encryption Key of PDB
generated on HSM.

3 – Integrating PSE with Oracle Database 11g R2

Oracle Database Integration Guide with PSE 23

 3
Integrating PSE with Oracle Database 11g R2

Setting up PSE for Transparent Data Encryption

To set up PSE for Transparent Data Encryption, perform the following steps:

Create below directory structure to ensure that the database is able to find PKCS#11library.

"/opt/oracle/extapi/[32,64]/hsm/{Vendor}/{Version}/"

For example,
/opt/oracle/extapi/64/hsm/safenet/4.2.1/

Where:

 [32, 64] specifies whether the supplied binary is 32-bits or 64-bits.

 Vendor stands for the name of the vendor supplying the library.

 Version refers to the version of the library. This should preferably be in the below format:

number.number.number

The API name requires no special format. However, the XX must be prefixed with the word lib, as
illustrated in the syntax. The extension, ext needs to be replaced by the extension of the library file.

After creating above directory structure create following soft link:

ln -s /opt/PTK/lib/aix-ppc64/libcthsm.a /opt/oracle/extapi/64/hsm/safenet/4.2.1/libcryptoki.so

Assign following ownership and permissions:

chown oracle:dba /opt/ETcprt/lib/aix-ppc/aix-ppc64/libcthsm.a
chmod 755 /opt/ETcprt/lib/aix-ppc/aix-ppc64/libcthsm.a
chown oracle:dba /opt/ETnethsm/lib/aix-ppc/aix-ppc64/libetnetclient.a
chmod 755 /opt/ETnethsm/lib/aix-ppc/aix-ppc64/libetnetclient.a

NOTE: Only one PKCS#11 library is supported at a time.

Oracle user should have the read/write permission of the above directory and file and after logged on as oracle
you need to export the following variables:

export ORACLE_SID=orcl
export ORACLE_BASE=/opt/app/oracle/ (oracle installation directory)
export ORACLE_HOME=$ORACLE_BASE/product/11.2.0/dbhome_1/
export PATH=$PATH:$ORACLE_HOME/bin
export TNS_ADMIN=$ORACLE_HOME/network/admin

3 – Integrating PSE with Oracle Database 11g R2

Oracle Database Integration Guide with PSE 24

Generating a Master Encryption Key for HSM-Based
Encryption

To start using HSM-based encryption, you need to have a master encryption key that will be stored inside the
HSM. The master encryption key is used to encrypt or decrypt column/tablespace encryption keys inside the
HSM. HSM can be used in the following ways to protect the Master Encryption Key:

 An existing Unified Master Encryption Key can be migrated onto the HSM.

 A Unified Master Encryption Key can be directly generated onto the HSM.

 Automatic wallet management across Oracle RAC instances.

Migrating Master Encryption Key onto the HSM

In order to migrate a Master Encryption Key for HSM-Based Encryption, perform the following instructions:

NOTE: It is assumed that no software-based wallet is yet created in the directory

you would specify to create one.

To test TDE with PSE, perform the following steps:

Verify that the 'traditional' software-based wallet is working fine:

1. Add the following to your "$ORACLE_HOME/network/admin/sqlnet.ora" file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY = <path to the
oracle wallet directory>)))

2. Start the database:

$ sqlplus / as sysoper

If the database is not yet started, you can start it using:

SQL> startup;

3. Connect to the database as 'system':

SQL> connect system/<password>

NOTE: Password for 'system' can be set during Oracle installation. All

dbapasswords throughout this document has been set to "temp123#".

4. Create an encryption wallet; the master key is added into it automatically; the double quotes are mandatory:

SQL> alter system set encryption key identified by "wallet_password";

NOTE: “wallet_password” must contain alphanumeric characters and have length

more than or equal to 8 characters.

3 – Integrating PSE with Oracle Database 11g R2

Oracle Database Integration Guide with PSE 25

5. Encrypt the 'credit_limit' column of the 'CUSTOMERS' table which is owned by the user 'OE':

SQL> alter table oe.customers modify (credit_limit encrypt);

6. With the next command, the values listed in the encrypted column are returned in clear text;
Transparent Data Encryption decrypts them automatically:

SQL> select credit_limit from oe.customers where rownum <15;

7. The following command lists encrypted columns in your database:

SQL> select * from dba_encrypted_columns;

8. Finally, this view contains information about the wallet itself:

SQL> select * from v$encryption_wallet;

9. Create an encrypted tablespace:

SQL> CREATE TABLESPACE securespace DATAFILE '/opt/oracle/app/oracle/oradata/ORCL/secure01.dbf'
SIZE 10M ENCRYPTION DEFAULT STORAGE (ENCRYPT);

10. Close the wallet:

SQL> alter system set wallet close identified by “wallet_password”;
SQL> exit

Test if the database can reach the HSM device:

11. Change your $ORACLE_HOME\network\admin\sqlnet.ora – file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM)(METHOD_DATA = (DIRECTORY = <path to the
oracle wallet directory>)))

12. $ sqlplus

Connect to the database as 'system':

13. Migrate the wallet onto the HSM device:

SQL> alter system set encryption key identified by “hsm_partition_pwd |<slot_lable>” migrate
using “wallet_password;

NOTE: "hsm_partition_pwd" is the password for the HSM partition where the

Master Encryption Key would be generated. The migrate using

software_keystore_password string re-encrypts the Transparent Data Encryption

column keys and tablespace keys with the new HSM based master key. The

software_keystore_password is the password given the software wallet in step 1.

14. With the next command, the values listed in the encrypted column are returned in clear text; Transparent
Data Encryption decrypts them automatically, now using the HSM master key:

SQL> select credit_limit from oe.customers where rownum <15;

15. Close the wallet:

SQL> alter system set wallet close identified by “wallet_password”;
SQL> exit

16. Start Oracle Wallet Manager from Start Menu:

17. Open the software-based wallet and click on 'Change Password'; use the same string you used for the HSM
wallet as the new password for the software based wallet in the form “hsm_partition_pwd”; click on “Save”, then “Exit”.

18. $ sqlplus

Connect to the database as 'system':

3 – Integrating PSE with Oracle Database 11g R2

Oracle Database Integration Guide with PSE 26

 SQL> alter system set wallet open identified by “hsm_partition_pwd”

This opens both the HSM and the software wallet.

19. Close the wallet:

SQL> alter system set wallet close identified by “wallet_password”;
SQL> exit

20. Start Oracle Wallet Manager from Start Menu:

21. Open the software-based wallet, change the password back to the initial password, check 'Auto-Login'; click
on 'Save', then 'Exit'

22. Verify that an auto-open software wallet has been created in the oracle wallet directory you specified in the
sqlnet.ora file: You will find two wallets in this directory: “ewallet.p12” and “cwallet.sso”; the latter is the auto-
open wallet; rename the encryption wallet:

$ < path to the oracle wallet directory >rename ewallet.p12 ewallet.p24

so that Transparent Data Encryption does not try to open it.

23. Connect to the database as system and open the HSM wallet (the software is already open):

SQL> alter system set wallet open identified by "hsm_partition_pwd";

Generating Master Encryption Key directly onto the HSM

In order to generate a Master Encryption Key for HSM-Based Encryption, perform the following instructions:

NOTE: It is assumed that no software or HSM based wallet is yet created.

Setting up Oracle to create Master Encryption Key onto HSM:

1. Add the following to your "$ORACLE_HOME/network/admin/sqlnet.ora" – file:

ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD = HSM))

2. Start the database:

$ sqlplus / as sysoper

If the database is not yet started, you can start it using:

SQL> startup;

3. Connect to the database as 'system':

SQL> connect system/<password>

NOTE: Password for 'system' can be set during Oracle installation. All

dbapasswords throughout this document has been set to "temp123#".

4. Create an encryption wallet. The master key would automatically be created onto the HSM.

SQL> alter system set encryption key identified by “hsm_partition_pwd”;

To use multiple slots or partitions, the syntax to generate master key to a slot or partition, use the following
syntax:
SQL> alter system set encryption key identified by "hsm_partition_pwd|<slot_name>";

5. Encrypt the 'credit_limit' column of the 'CUSTOMERS' table which is owned by the user 'OE':

3 – Integrating PSE with Oracle Database 11g R2

Oracle Database Integration Guide with PSE 27

SQL> alter table oe.customers modify (credit_limit encrypt);

6. With the next command, the values listed in the encrypted column are returned in clear text; Transparent
Data Encryption decrypts them automatically:

SQL> select credit_limit from oe.customers where rownum <15;

7. The following command lists encrypted columns in your database:

SQL> select * from dba_encrypted_columns;

8. Finally, this view contains information about the wallet itself:

SQL> select * from v$encryption_wallet;

9. Create an encrypted tablespace:

SQL> CREATE TABLESPACE securespace DATAFILE '/opt/oracle/app/oracle/oradata/ORCL/secure01.dbf'
SIZE 10M ENCRYPTION DEFAULT STORAGE (ENCRYPT);

10. Close the wallet:

SQL> alter system set wallet close identified by “wallet_password”;

SQL> exit

4 – Troubleshooting Tips

Oracle Database Integration Guide with PSE 28

 4
Troubleshooting Tips

Problem – 1

Error message "ORA-43000: PKCS11: library not found" or "ORA-28376: cannot find PKCS11 library" when
trying to generate Master Key on HSM or migrate keys from wallet to HSM.

Solution:

1. Ensure that library path is set correctly, for example:

"/opt/oracle/extapi/[32/64]/HSM/[x.x.x]/libcryptoki2_64.so"

2. Ensure that oracle:oinstall is the owner: group of this directory with read/write permissions.

3. Ensure that 64-bit JVM is running on the machine on which we are using 64 bit client because 32 bit JVM
would not able to use the 64 bit library.

