

Java Code Signing
INTEGRATION GUIDE

THALES LUNA HSM

THALES DATA PROTECTION ON DEMAND

Copyright © 2020 Thales Group
2

Document Information

Document Part Number 007-000083-001

Revision C

Release Date 5 October 2020

Trademarks, Copyrights, and Third-Party Software

Copyright © 2020 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
3

CONTENTS

Overview .. 4
Supported Platforms .. 4
Prerequisites .. 5

Configure the Luna HSM .. 5
Provision HSM on Demand Service ... 6
Install Java Development Kit .. 10

Signing Jar Files using Keys Generated on Thales HSM .. 10
Configure Java for Luna Keystore .. 10
Generate Signing Key and Certificate on Luna Keystore ... 11
Sign and Verify Jar File ... 16

Migrating JKS keystore to Luna HSM Keystore ... 17
Contacting Customer Support .. 19

Customer Support Portal .. 19
Telephone Support ... 19
Email Support ... 19

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
4

Overview
You can use Java Code Signing to sign Java applications for desktops, digitally sign .jar files, and enable

Netscape Object Signing recognized by Java Runtime Environment (JRE). In Java, the process for setting

up the Code Signing Certificate consists of creating a keystore and a Certificate Signing Request (CSR)

and then, installing the code signing certificate on the keystore from where the CSR was generated. The

Java platform enables one to digitally sign .jar files. The signer signs the .jar file using a private key. The

corresponding public key is placed in the .jar file together with its certificate, so that it is available for use by

anyone who wants to verify the signature. When the .jar file is signed, the user can timestamp the

signature.

This guide demonstrates how to complete Java Code Signing using a signing key generated on a Luna

HSM or an HSM on Demand service. Using a Luna HSM or an HSM on Demand service to generate the

RSA keys for Java code signing provides the following benefits:

 Secure generation, storage, and protection of the signing private keys on FIPS 140-2 level 3 validated

hardware.

 Full life cycle management of the keys.

 Access to the HSM audit trail*.

 Significant performance improvements by off-loading cryptographic operations from signing servers.

*HSMoD services do not have access to the secure audit trail

Supported Platforms
Thales Luna HSM: Thales Luna HSM appliances are purposefully designed to provide a balance of

security, high performance, and usability that makes them an ideal choice for enterprise, financial, and

government organizations. Thales Luna HSMs physically and logically secure cryptographic keys and

accelerate cryptographic processing. The Luna HSM on premise offerings include the Luna Network HSM,

PCIe HSM, and Luna USB HSMs. The following platforms are supported:

 Windows

 Linux

Thales DPoD: Thales Data Protection on Demand (DPoD) is a cloud-based platform that provides on-

demand HSM and Key Management services through a simple graphical user interface. With DPoD,

security is simple, cost effective and easy to manage because there is no hardware to buy, deploy, and

maintain. As an Application Owner, you click and deploy services, generate usage reports, and maintain

just the services you need. The following platforms are supported:

 Windows

 Linux

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
5

Prerequisites
Complete the following tasks before you begin the installation:

Configure the Luna HSM

Set up and configure the Luna HSM device for your system. Refer to the Thales Luna HSM Product

Documentation for help.

1. Ensure the HSM is setup, initialized, provisioned, and ready for deployment.

2. Create a partition on the HSM for use by Java Code Signing.

3. If you are using a Thales Luna Network HSM, register a client for the system and assign the client to a
partition to create an NTLS connection.

4. Initialize the Crypto Officer and Crypto User roles for the initialized partition.

5. Verify that the partition is successfully registered and configured. The command to see the registered
partition is:

lunacm.exe (64-bit) v10.2.0-111. Copyright (c) 2020 SafeNet. All rights

reserved.

Available HSMs:

Slot Id -> 0

Label -> JCS

Serial Number -> 1280780175877

Model -> LunaSA 7.3.0

Firmware Version -> 7.3.0

Configuration -> Luna User Partition With SO (PW) Key Export With

Cloning Mode

Slot Description -> Net Token Slot

FM HW Status -> FM Ready

Current Slot Id: 0

NOTE: Refer to the Thales Luna Network HSM Product Documentation for detailed
steps for creating NTLS connection, initializing the partition, and initializing the user
roles.

Controlling User Access to the HSM

NOTE: This section is applicable only for Linux users.

By default, only the root user has access to the HSM. You can specify a set of non-root users that are

permitted to access the HSM by adding them to the hsmusers group. The client software installation

automatically creates the hsmusers group. The hsmusers group is retained when you uninstall the client

software, allowing you to upgrade the software while retaining your hsmusers group configuration.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
6

Adding a user to hsmusers group

To allow non-root users or applications access to the HSM, assign the users to the hsmusers group. The

users you assign to the hsmusers group must exist on the client workstation.

1. Ensure that you have sudo privileges on the client workstation.

2. Add a user to the hsmusers group.

sudo gpasswd --add <username> hsmusers

Where <username> is the name of the user you want to add to the hsmusers group.

Removing a user from hsmusers group

1. Ensure that you have sudo privileges on the client workstation.

2. Remove a user from the hsmusers group.

sudo gpasswd -d <username> hsmusers

Where <username> is the name of the user you want to remove from the hsmusers group. You must

log in again to see the change.

NOTE: The user you delete will continue to have access to the HSM until you reboot the
client workstation.

Setting up Thales Luna HSM High-Availability (HA)

Refer to the Thales Luna Network HSM Product Documentation for HA steps and details regarding

configuring and setting up two or more HSM appliances on Windows and UNIX systems. You must enable

the HAOnly setting in HA for failover to work so that if primary stop functioning for some reason, all calls

automatically routed to secondary till primary starts functioning again.

Provision HSM on Demand Service

This service enables your client machine to access an HSM application partition for storing cryptographic

objects used by your applications. Application partitions can be assigned to a single client, or multiple

clients can be assigned to, and share, a single application partition. You need to provision your application

partition by initializing the following roles:

 Security Officer (SO) - Responsible for setting the partition policies and for creating the Crypto

Officer.

 Crypto Officer (CO) - Responsible for creating, modifying, and deleting crypto objects within the

partition. The CO can use the crypto objects and create an optional, limited-capability role called

Crypto User that can use the crypto objects but cannot modify them.

 Crypto User (CU) – An optional role that can use crypto objects while performing cryptographic

operations.

NOTE: Refer the “Thales Data Protection on Demand Application Owner Quick Start
Guide” for configuring the HSM on Demand service and creating a service client.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
7

The HSM service client package is a zip file containing system information needed to
connect your client machine to an existing HSM on Demand service.

To Configure DPoD HSM on Demand service with/without Luna Client

HSM on Demand Service can be configured in the following scenarios:

 User wants to use DPoD Client to access service partition: Execute steps 1, 2, 3, 4 and 10 below.

 User wants to use Luna Client to access the service partition: Execute steps 1-10 below.

 User wants to use existing Luna Client to access the service partition in Hybrid mode with Luna

Partition: Execute steps 1-10 below.

NOTE: Last two scenarios are supported for Universal Client only, from Luna Client
v10.1.0 onwards.

To configure DPoD HSM on Demand service:

1. Transfer the downloaded .zip file to your Client workstation using pscp, scp, or other secure means.

2. Extract the .zip file into a directory on your client workstation.

3. Extract or untar the appropriate client package for your operating system. Do not extract to a new
subdirectory; place the files in the DPoD client install directory.

[Windows]

cvclient-min.zip

[Linux]

cvclient-min.tar

tar -xvf cvclient-min.tar

4. Run the provided script to create a new configuration file containing information required by the
HSMoD service.

[Windows]

Right-click setenv.cmd and select Run as Administrator.

[Linux]

Source the setenv script.

source ./setenv

NOTE: Run the LunaCM utility available in the DPoD client and verify the service
partition is listed. If you need to configure DPoD service partition with existing Luna
Client follow further steps.

https://thalesdocs.com/gphsm/luna/10.2/docs/network/Content/Utilities/pscp.htm

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
8

5. Copy the server and partition certificates from the DPoD client directory to your Luna client certificates
directory:

DPoD Certificates:

server-certificate.pem

partition-ca-certificate.pem

partition-certificate.pem

LunaClient Certificate Directory:

[Windows default]

C:\Program Files\Safenet\Lunaclient\cert\

[Linux default]

/usr/safenet/lunaclient/cert/

6. Open the configuration file from the DPoD client directory and copy the XTC and REST section.

[Windows]

crystoki.ini

[Linux]

Chrystoki.conf

7. Edit the Luna Client configuration file and add the XTC and REST section. In both sections you need to
change only server and partition certificates path from step 5. Do not change any other entries
provided in XTC and REST section.

[XTC]

. . .

PartitionCAPath=<LunaClient_cert_directory>\partition-ca-certificate.pem

PartitionCertPath00=<LunaClient_cert_directory>\partition-certificate.pem

. . .

[REST]

. . .

SSLClientSideVerifyFile=<LunaClient_cert_directory>\server-certificate.pem

. . .

8. Edit the following entry from the Misc section and update the correct path for the plugins directory:

 Misc]

 PluginModuleDir=<LunaClient_plugins_directory>

[Windows Default]

C:\Program Files\Safenet\Lunaclient\plugins\

[Linux Default]

/usr/safenet/lunaclient/plugins/

Save the configuration file. If you wish, you can now safely delete the extracted DPoD client directory.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
9

9. Reset the ChrystokiConfigurationPath environment variable and point back to the location of the
Luna Client configuration file.

[Windows]

In the Control Panel, search for "environment" and select Edit the system environment variables.

Click Environment Variables. In both list boxes for the current user and system variables,

edit ChrystokiConfigurationPath and point to the crystoki.ini file in the Luna client install directory.

[Linux]

Either open a new shell session, or export the environment variable for the current session pointing to

the location of the Chrystoki.conf file:

export ChrystokiConfigurationPath=/etc/

10. Run the LunaCM utility and verify the service partition is listed. If you already have a Luna Partition
before configuring the DPoD service partition, both Luna and DPoD service partition will be listed.

Constraints on HSM on Demand Services

HSM on Demand Service in FIPS mode

HSMoD services operate in a FIPS and non-FIPS mode. If your organization requires non-FIPS algorithms

for your operations, ensure you enable the Allow non-FIPS approved algorithms check box when

configuring your HSM on Demand service. The FIPS mode is enabled by default. Refer to the Mechanism

List in the SDK Reference Guide for more information about available FIPS and non-FIPS algorithms.

Verify HSM on Demand <slot value>

LunaCM commands work on the current slot. If there is only one slot, then it is always the current slot. If

you are completing an integration using HSMoD services, you need to verify which slot on the HSMoD

service you send commands to. If there is more than one slot, then use the slot set command to direct a

command to a specified slot. You can use slot list to determine which slot numbers are in use by which

HSMoD service.

Using Thales HSM in FIPS Mode

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with

aux primes. This means that RSA PKCS and X9.31 key generation is no longer approved for a FIPS-

compliant HSM. If you are using the Luna HSM or HSM on Demand service in FIPS mode, you have to

make the following change to the configuration file:

[Misc]

RSAKeyGenMechRemap=1

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM

or HSMoD is in FIPS mode.

NOTE: For Universal Client, above setting is not required. This setting is applicable for
Luna Client 7.x only.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
10

NOTE: This remapping is automatic if you are using Luna HSM Client 10.1 and above,
and the configuration file entry is ignored.

Install Java Development Kit

Ensure that the Java Development Kit (JDK) is installed on your server or local computer. You can run the

commands in this instruction wherever you have the keytool command available.

Signing Jar Files using Keys Generated on Thales HSM
This section demonstrates the method to use Java keytool utility for generating signing keys and certificate

on Thales HSMs and Java jarsigner utility to sign the JAR file.

After creating your Certificate Signing request (CSR), ensure that you keep track of your keystore file as it

contains the private key. In addition, you require the keystore file to install your Code Signing Certificate.

Configure Java for Luna Keystore

To generate the signing keys on Luna HSM using Java, you need to configure java.security configuration

file and a Luna keystore file.

To configure java.security file for JDK 7/8:

1. Edit the Java Security Configuration file java.security located in the directory
<JDK_installation_directory>/jre/lib/security.

2. Add the Luna Provider to the java.security file as shown below:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.safenetinc.luna.provider.LunaProvider

security.provider.3=sun.security.rsa.SunRsaSign

security.provider.4=sun.security.ec.SunEC

security.provider.5=com.sun.net.ssl.internal.ssl.Provider

security.provider.6=com.sun.crypto.provider.SunJCE

security.provider.7=sun.security.jgss.SunProvider

security.provider.8=com.sun.security.sasl.Provider

security.provider.9=org.jcp.xml.dsig.internal.dom.XMLDSigRI

security.provider.10=sun.security.smartcardio.SunPCSC

3. Save the changes to the java.security file.

To configure java.security file for JDK 11

1. Edit the Java Security Configuration file java.security located in the directory
<JDK_installation_directory>/conf/security.

2. Add the Luna Provider to the java.security file as shown below:

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
11

security.provider.1=SUN

security.provider.2=com.safenetinc.luna.provider.LunaProvider

security.provider.3=SunRsaSign

security.provider.4=SunEC

security.provider.5=SunJSSE

security.provider.6=SunJCE

security.provider.7=SunJGSS

security.provider.8=SunSASL

security.provider.9=XMLDSig

security.provider.10=SunPCSC

security.provider.11=JdkLDAP

security.provider.12=JdkSASL

security.provider.13=SunPKCS11

3. Save the changes to the java.security file.

To create HSM keystore

1. Copy the LunaAPI.dll (Windows) or libLunaAPI.so (UNIX) and LunaProvider.jar file from the
<Luna_installation_directory>/jsp/lib folder to the <JDK_installation_directory>/jre/lib/ext.

NOTE: When using JDK 11, skip the step 1 as JDK 11 do not required to copy the files.

2. Set the environment variables for JAVA_HOME and PATH.

export JAVA_HOME=<JDK_installation_directory>

export PATH=$JAVA_HOME/bin:$PATH

NOTE: For Windows, set the JDK bin folder in PATH variable under System
Environments.

3. Create a file named lunastore (it could be any user defined name) and add the following entry where

<partition_label> would be your Luna HSM partition name.

tokenlabel:<partition_label>

4. Save the file in the current working directory.

Generate Signing Key and Certificate on Luna Keystore

Keytool utility provided by JDK will be used to generate signing keys and certificate on Luna HSM. To

Generate Signing Keys:

1. Generate a key signing key and certificate using the Java keytool utility in the Luna keystore. This will
generate the key pair in the Thales Luna HSM or HSM on Demand service.

For JDK 7/8

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
12

keytool -genkeypair -alias lunakey -keyalg RSA -sigalg SHA256withRSA -

keypass userpin1 -keysize 2048 -keystore lunastore -storepass userpin1 -

storetype luna

For JDK 11

keytool -genkeypair -alias lunakey -keyalg RSA -keysize 2048 -sigalg

SHA256withRSA -keypass userpin1 -keystore lunastore -storetype Luna -

storepass userpin1 -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

When you run the command it will prompt for the following details:

What is your first and last name?

 [Unknown]: Java Code Signing

What is the name of your organizational unit?

 [Unknown]: RSA-HSM

What is the name of your organization?

 [Unknown]: Thales

What is the name of your City or Locality?

 [Unknown]: Noida

What is the name of your State or Province?

 [Unknown]: Uttar Pradesh

What is the two-letter country code for this unit?

 [Unknown]: IN

Is CN=Java Code Signing, OU=RSA-HSM, O=Thales, L=Noida, ST=Uttar Pradesh,

C=IN correct?

 [no]: yes

A new key pair will be generated on the Luna HSM or HSMoD service.

NOTE: The command above used “userpin1” as storepass which is the partition Crypto
Officer Pin you set when initializing the CO role for the partition.

2. Verify that the private key is in the Luna HSM or HSMoD service.

For JDK 7/8

keytool -list -v -storetype luna -keystore lunastore

For JDK 11

keytool -list -v -keystore lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

Enter the keystore password, when prompted.

Enter keystore password:

Keystore type: LUNA

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
13

Keystore provider: LunaProvider

Your keystore contains 1 entry

Alias name: lunakey

Creation date: Aug 26, 2020

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=Java Code Signing, OU=RSA-HSM, O=Thales, L=Noida, ST=Uttar

Pradesh, C=IN

Issuer: CN=Java Code Signing, OU=RSA-HSM, O=Thales, L=Noida, ST=Uttar

Pradesh, C=IN

Serial number: 21103d61

Valid from: Wed Aug 26 18:24:00 EDT 2020 until: Tue Nov 24 17:24:00 EST

2020

Certificate fingerprints:

SHA1: 80:5B:F5:12:88:A4:B5:45:F6:43:51:46:08:C4:10:2C:FF:88:BA:44

SHA256:

03:6D:86:7F:8B:28:DC:E3:62:F2:32:3C:1C:9C:D7:5A:5C:7C:67:55:5E:EE:BC:98:16:

40:BA:56:1A:43:E8:94

Signature algorithm name: SHA256withRSA

Subject Public Key Algorithm: 2048-bit RSA key

Version: 3

3. Generate a certificate request for a signing key in the Luna keystore.

For JDK 7/8

keytool -certreq -alias lunakey -sigalg SHA256withRSA -file certreq_file

-storetype luna -keystore lunastore

For JDK 11

keytool -certreq -alias lunakey -sigalg SHA256withRSA -file certreq_file

-keystore lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

Enter the keystore password, when prompted. File certreq_file will be generated in the current
directory.

4. Submit the CSR file to your Certification Authority (CA). Have the CA authenticate the request with the
Code Signing template and return a signed certificate or a certificate chain. Save the reply and the root
certificate of the CA in the current working directory.

5. Import the CA’s Root certificate and signed certificate or certificate chain in to the keystore.

For JDK 7/8

To import the CA root certificate, execute the following:

keytool -trustcacerts -importcert -alias rootca -file root.cer -keystore

lunastore -storetype luna

To import the signed certificate reply or certificate chain, execute the following:

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
14

keytool -importcert -trustcacerts -alias lunakey -file signing.p7b -

keystore lunastore -storetype luna

For JDK 11

To import the CA root certificate, execute the following:

keytool -trustcacerts -importcert -alias rootca -file root.cer -keystore

lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

To import the signed certificate reply or certificate chain, execute the following:

keytool -trustcacerts -importcert -alias lunakey -file signing.p7b -

keystore lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

Where root.cer and signing.p7b are the CA Root Certificate and Signed Certificate Chain,
respectively.

6. Verify the keystore contents in the Luna HSM or HSMoD service.

For JDK 7/8

keytool -list -v -storetype luna -keystore lunastore

For JDK 11

keytool -list -v -keystore lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

Enter the keystore password, when prompted.

Enter keystore password:

Keystore type: LUNA

Keystore provider: LunaProvider

Your keystore contains 2 entries

Alias name: lunakey

Creation date: Aug 26, 2020

Entry type: PrivateKeyEntry

Certificate chain length: 2

Certificate[1]:

Owner: CN=Administrator, CN=Users, DC=intgca, DC=com

Issuer: CN=intgca-WIN-Q5F45F5JLU0-CA, DC=intgca, DC=com

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
15

Serial number: 4c000000b9daae1c328f7218900000000000b9

Valid from: Wed Aug 26 12:13:36 EDT 2020 until: Thu Aug 26 12:13:36 EDT

2021

Certificate fingerprints:

SHA1: 73:E5:F3:28:4D:D1:39:05:57:2C:03:6F:EF:20:9F:E6:97:36:3C:71

SHA256:

89:C3:FE:3F:3D:AD:7D:0F:6A:CE:1A:C6:9C:77:D8:15:48:F3:77:2A:09:F4:6C:24:F6:

7F:CE:04:3D:F7:AC:1C

Signature algorithm name: SHA256withRSA

Subject Public Key Algorithm: 2048-bit RSA key

Version: 3

Certificate[2]:

Owner: CN=intgca-WIN-Q5F45F5JLU0-CA, DC=intgca, DC=com

Issuer: CN=intgca-WIN-Q5F45F5JLU0-CA, DC=intgca, DC=com

Serial number: 1ccec3bcead7d9af42e932b59c487218

Valid from: Wed Feb 19 15:00:23 EST 2020 until: Wed Feb 19 15:10:23 EST

2025

Certificate fingerprints:

SHA1: 8C:34:D5:3D:53:2F:D3:4F:C7:32:A0:1B:7C:7C:BF:AB:C7:36:4F:89

SHA256:

A3:9F:BD:FE:5B:99:C7:B9:D9:A8:3C:C6:CB:78:5B:A8:BC:A0:FC:09:18:98:EE:BD:A5:

A7:C1:B7:F0:8E:48:7E

Signature algorithm name: SHA256withRSA

Subject Public Key Algorithm: 2048-bit RSA key

Version: 3

Alias name: rootca

Creation date: Aug 26, 2020

Entry type: trustedCertEntry

Owner: CN=intgca-WIN-Q5F45F5JLU0-CA, DC=intgca, DC=com

Issuer: CN=intgca-WIN-Q5F45F5JLU0-CA, DC=intgca, DC=com

Serial number: 1ccec3bcead7d9af42e932b59c487218

Valid from: Wed Feb 19 15:00:23 EST 2020 until: Wed Feb 19 15:10:23 EST

2025

Certificate fingerprints:

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
16

SHA1: 8C:34:D5:3D:53:2F:D3:4F:C7:32:A0:1B:7C:7C:BF:AB:C7:36:4F:89

SHA256:

A3:9F:BD:FE:5B:99:C7:B9:D9:A8:3C:C6:CB:78:5B:A8:BC:A0:FC:09:18:98:EE:BD:A5:

A7:C1:B7:F0:8E:48:7E

Signature algorithm name: SHA256withRSA

Subject Public Key Algorithm: 2048-bit RSA key

Version: 3

Sign and Verify Jar File

Jarsigner utility provided by JDK will be used to sign the jar files using signing keys on Luna HSM and

verification will be done by the certificate embed in the signed jar file. To Sign/Verify Jar Files:

1. Move the jar file into the current working directory and sign the jar file. The system will prompt you for
the Luna keystore password for signing the jar file.

 For JDK 7/8

 # jarsigner -keystore lunastore -storetype luna -signedjar

<name_of_signedjar_to_be_generated> <jar_to_be_signed>

<alias_of_private_key> -tsa <time_stamping_authority_url>

Example

jarsigner -keystore lunastore -storetype luna -signedjar signedsample.jar

sample.jar lunakey -tsa

http://timestamp.globalsign.com/scripts/timestamp.dll

Enter Passphrase for keystore:

jar signed.

The signer certificate will expire on 2021-08-26.

The timestamp will expire on 2027-06-23.

For JDK 11

jarsigner -keystore lunastore -storetype luna -signedjar

<name_of_signedjar_to_be_generated> <jar_to_be_signed>

<alias_of_private_key> -tsa <time_stamping_authority_url> -providername

<lunaprovider> -providerclass <luna class path> -J-Djava.library.path=<luna

JSP lib path> -J-cp -J<lunaprovider jar file>

Example

jarsigner -keystore lunastore -storetype luna -signedjar signedsample.jar

sample.jar lunakey -tsa

http://timestamp.globalsign.com/scripts/timestamp.dll -providername

LunaProvider -providerclass com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

Enter Passphrase for keystore:

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
17

jar signed.

The signer certificate will expire on 2021-08-26.

The timestamp will expire on 2027-06-23.

2. Verify the signed jar file. Execute the following command. It will display the jar verified message if the
operation is successful.

jarsigner -verify signedsample.jar -verbose –certs

sm X 569 Wed Aug 26 18:44:48 EDT 2020 META-INF/MANIFEST.MF

 646 Wed Aug 26 18:44:48 EDT 2020 META-INF/LUNAKEY.SF

 6007 Wed Aug 26 18:44:48 EDT 2020 META-INF/LUNAKEY.RSA

 0 Thu Dec 02 10:41:40 EST 2010 META-INF/

sm X 506 Mon May 21 00:09:04 EDT 2007 JSmoothPropertiesDisplayer$1.class

sm X 533 Mon May 21 00:09:04 EDT 2007 JSmoothPropertiesDisplayer$2.class

sm X 1567 Mon May 21 00:09:04 EDT 2007 JSmoothPropertiesDisplayer$3.class

sm X 3905 Mon May 21 00:09:04 EDT 2007 JSmoothPropertiesDisplayer.class

 s = signature was verified

 m = entry is listed in manifest

 k = at least one certificate was found in keystore

 X = not signed by specified alias(es)

- Signed by "CN=Administrator, CN=Users, DC=intgca, DC=com"

 Digest algorithm: SHA-256

 Signature algorithm: SHA256withRSA, 2048-bit key

Timestamped by "CN=GlobalSign TSA for Standard - G2, O=GMO GlobalSign Pte

Ltd, C=SG" on Wed Aug 26 17:43:16 UTC 2020

 Timestamp digest algorithm: SHA-256

 Timestamp signature algorithm: SHA1withRSA, 2048-bit key jar

 verified.

The signer certificate will expire on 2021-08-26.

The timestamp will expire on 2027-06-23.

The .jar file is signed and verified. The private key and signing certificate are securely stored on the Luna

HSM or HSM on Demand service. This completes the Java Code Signing integration with Luna HSM.

Migrating JKS keystore to Luna HSM Keystore
If the JKS keystore is already in use and the user wants to migrate the JKS keystore onto the Luna HSM or

HSM on Demand service, complete the following procedure. Ensure that environment variables for

JAVA_HOME and PATH are set.

1. Ensure that Luna HSM partition or HSMoD service is configured to use.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
18

2. Configure Java to use Thales HSM as described in the section Configure Java for Luna Keystore.

3. Migrate the JKS keystore (examplestore) to lunastore.

For JDK 7/8

keytool -importkeystore -srckeystore keystore.jks -destkeystore lunastore

-srcstoretype jks -deststoretype luna

For JDK 11

keytool -importkeystore -srckeystore keystore.jks -destkeystore lunastore

-srcstoretype jks -deststoretype luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

When you run the command it will prompt for the following details:

Importing keystore keystore.jks to lunastore...

Enter destination keystore password:

Enter source keystore password:

Existing entry alias rootca exists, overwrite? [no]: yes

Entry for alias rootca successfully imported.

Entry for alias jkskey successfully imported.

Import command completed: 2 entries successfully imported, 0 entries

failed or cancelled

NOTE: When prompted for destination keystore password, provide partition Crypto
Officer Pin that you had set when initializing the CO role for the partition.

4. Verify the keystore contents in the Luna HSM or HSMoD service.

For JDK 7/8

keytool -list -v -storetype luna -keystore lunastore

For JDK 11

keytool -list -v -keystore lunastore -storetype Luna -providerpath

"/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar" -providerclass

com.safenetinc.luna.provider.LunaProvider -J-

Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -J-cp -

J/usr/safenet/lunaclient/jsp/lib/LunaProvider.jar

 Enter the keystore password, when prompted. After successfully migrating the signing keys from JKS

keystore to lunastore, you can sign/verify the jar files using the signing keys migrated on the Luna HSM

or HSM on Demand service.

Java Code Signing: Integration Guide

Copyright © 2020 Thales Group
19

Contacting Customer Support
If you encounter a problem while installing, registering, or operating this product, refer to the

documentation. If you cannot resolve the issue, contact your supplier or Thales Customer Support. Thales

Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is

governed by the support plan arrangements made between Thales and your organization. Please consult

this support plan for further information about your entitlements, including the hours when telephone

support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more.

You can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a
new account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed

on the support portal.

Email Support

You can also contact technical support by email at technical.support.DIS@thalesgroup.com.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/
mailto:technical.support.DIS@thalesgroup.com

