

Kubernetes Secrets Encryption
INTEGRATION GUIDE

THALES LUNA HSM

Copyright © 2020 Thales Group
2

Document Information

Document Part Number 007-000790-001

Revision A

Release Date 22 October 2020

Trademarks, Copyrights, and Third-Party Software

Copyright © 2020 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
3

CONTENTS

Overview .. 4

Certified Platforms .. 4

Prerequisites .. 5

Configure Luna HSM ... 5

Set up Kubernetes Cluster ... 6

Configuring Luna HSM with KMS Plugin for Kubernetes Secret Encryption ... 7

Configuring Luna HSM with K8S-KMS-Plugin .. 7

Deploying K8S-KMS-Plugin as KMS Provider .. 13

Verifying Kubernetes Secret Encryption using KMS Provider ... 15

Contacting Customer Support ... 19

Customer Support Portal ... 19

Telephone Support .. 19

Email Support ... 19

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
4

Overview
Kubernetes Secrets contain sensitive data like your passwords, keys, and certificates. Kubernetes developed

the feature to use KMS encryption provider for Encrypting Secret Data at Rest. The KMS encryption provider

uses an envelope encryption scheme to encrypt data in etcd. The data is encrypted using a data encryption key

(DEK); a new DEK is generated for each encryption. The DEKs are encrypted with a key encryption key (KEK)

that is stored and managed in a remote KMS. The KMS provider uses gRPC to communicate with a specific

KMS plugin. The KMS plugin, which is implemented as a gRPC server and deployed on the same host(s) as the

Kubernetes master(s), is responsible for all communication with the remote KMS.

Thales has developed a KMS plugin that communicates with a remote KMS for managing Secret Data

Encryption where:

> KMS Plugin - K8S-KMS-Plugin

> Remote KMS - Thales Luna HSM

Following are some of the benefits of using Luna HSM along with K8S-KMS-Plugin to generate encryption keys

that protect secret data for Kubernetes Secret encryption:

> Secure generation, storage, and protection of encryption keys on FIPS 140-2 level 3 validated hardware

> Full life cycle management of keys

> HSM audit trail

> Significant performance improvements by off-loading cryptographic operations from servers

> Using Cloud services with confidence

Certified Platforms
The following platforms are certified on Thales Luna HSM for this integration:

Kubernetes KMS Plugin Operating System

Kubernetes version 1.19.0

K8S-KMS-Plugin CentOS 7

Thales Luna HSM: Thales Luna HSM appliances are purposefully designed to provide a balance of security,

high performance, and usability that makes them an ideal choice for enterprise, financial, and government

organizations. Luna HSMs physically and logically secure cryptographic keys and accelerate cryptographic

processing. The Thales Luna HSM on premise offerings include the Luna Network HSM, PCIe HSM, and Luna

USB HSMs. Luna HSMs are also available for access as an offering from cloud service providers such as IBM

cloud HSM and AWS cloud HSM classic.

NOTE: All Luna HSMs support this integration, provided a supported Luna Client is used.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
5

Prerequisites
Complete the following tasks before you proceed with this integration:

Configure Luna HSM
If you are using a Luna HSM:

1. Ensure that the HSM is set up, initialized, provisioned, and ready for deployment. Refer to the Luna HSM
Product Documentation for more information.

2. Create a partition on the Luna HSM for use with Kubernetes.

3. Register a client for the system and assign the client to each partition to create an NTLS connection for the
three partitions, if you are using a Luna Network HSM. Initialize the Crypto Officer and Crypto User roles for
each registered partition.

4. Ensure that each partition is successfully registered and configured. The command to see the registered
partitions is:

/usr/safenet/lunaclient/bin/lunacm

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
6

5. Enable partition policies 22 and 23 to allow activation and auto-activation for PED-authenticated HSM.

NOTE: Follow the Luna Network HSM documentation for detailed steps for creating NTLS
connection, initializing the partitions, and various user roles. The screenshot above is
showing the 2 Luna partitions are configured in HA mode.

Configuring Luna HSM HA (High-Availability)

Please refer to the Luna Network HSM documentation for HA steps and details regarding configuring and

setting up two or more HSM appliances on Windows and UNIX systems. You must enable the HAOnly setting in

HA for failover to work so that if the primary device stop functioning for some reason, all calls automatically

routed to the secondary device till the primary device starts functioning again.

NOTE: This integration is tested in both HA and FIPS mode.

Set up Kubernetes Cluster
Refer to the Kubernetes Documentation for installing and running the Kubernetes Cluster. For demonstration,
Kubernetes Cluster used in this documentation is setup with 1 Master and 2 Worker nodes on VMware. After

installation, ensure that Kubernetes Cluster is up and running successfully.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
7

Configuring Luna HSM with KMS Plugin for Kubernetes Secret
Encryption
Kubernetes Secret encryption uses KMS provider for encryption/decryption request and KMS provider calls the

K8S-KMS-Plugin to communicate with Luna HSM. Complete the following tasks on Kubernetes Master. Any

configuration updates to the Kubernetes Master will automatically deploy on all Nodes connected to the Master.

> Configuring Luna HSM with K8S-KMS-Plugin

> Deploying K8S-KMS-Plugin as KMS Provider

> Verifying Kubernetes Secret Encryption using KMS Provider

Configuring Luna HSM with K8S-KMS-Plugin
Before starting ensure that Luna Client is installed and NTL Service is configured with the Luna HSM partition

on Master Host of Kubernetes Cluster. To configure Luna HSM with K8S-KMS-Plugin:

1. Connect to the master host as root or as a user with administrative privileges.

2. Set the GOPATH. Typically, the value will be a directory tree child of your development workspace.

export KMSPATH=/opt/kms

mkdir -p $KMSPATH/src/github.com/thalescpl-io

cd $KMSPATH/src/github.com/thalescpl-io

3. Clone the k8s-kms-plugin repository in current directory by executing the following command:

git clone https://github.com/thalescpl-io/k8s-kms-plugin.git

4. Copy the Luna minimal client package at the k8s-kms-plugin directory:

cp /home/LunaClient-Minimal-10.2.0-111.x86_64.tar k8s-kms-plugin/

5. Copy the Luna Configuration file /etc/Chrystoki.conf file to k8s-kms-plugin directory:

cp /etc/Chrystoki.conf k8s-kms-plugin/

6. Edit the library path and change the Chrystoki2 and Secure Trusted Channel sections in k8s-kms-
plugin/Chrystoki.conf file:

Chrystoki2 = {

 LibUNIX = /usr/safenet/lunaclient/libs/64/libCryptoki2.so;

 LibUNIX64 = /usr/safenet/lunaclient/libs/64/libCryptoki2_64.so;

}

Secure Trusted Channel = {

 ClientTokenLib = /usr/safenet/lunaclient/libs/64/libSoftToken.so;

}

7. Copy the certificates and keys required to connect to Luna HSM in k8s-kms-plugin directory:

cp -r /usr/safenet/lunaclient/cert/server k8s-kms-plugin/

cp -r /usr/safenet/lunaclient/cert/client k8s-kms-plugin/

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
8

8. Create a new file start.sh under k8s-kms-plugin directory with the minimum required flags to work with
Luna HSM.

cd k8s-kms-plugin/

cat start.sh

#!/usr/bin/env bash

/k8s-kms-plugin serve --provider luna --p11-lib
/usr/safenet/lunaclient/libs/64/libCryptoki2_64.so --p11-label KubeKMS-HA --
p11-pin userpin1

Where p11-label and p11-pin are partition name and password respectively. Below are the further options
for k8s-kms-plugin which you can specify as per your requirements:

Usage:

serve [flags]

Flags:

 --allow-any Allow any device (accepts all ids/secrets)

--disable-socket Disable socket based server

--enable-server Enable TLS based server

-h, --help help for serve

--socket string Unix Socket (default "/tmp/run/hsm-plugin-server.sock")

--tls-ca string TLS CA cert (default "certs/ca.crt")

--tls-certificate string TLS server cert (default "certs/tls.crt")

--tls-key string TLS server key (default "certs/tls.key")

Global Flags:

--auto-create Auto create the keys if needed (default true)

--ca-id string Cert ID for CA Cert record (default "1c3d30d5-dfa8-4167-
a9f9-2c768464181b")

--config string ConfigFile)

--host string TCP Host (default "0.0.0.0")

--kek-id string Key ID for KMS KEK (default "a37807cd-6d1a-4d75-813a-
e120f30176f7")

-p, --native-path string Path to key store for native provider(Files only) (default
".keys")

--output string Log output format... text or json supported (default "text")

--p11-key-label string Key Label to use for encrypt/decrypt (default "k8s-dek")

--p11-label string P11 token label

--p11-lib string Path to p11 library/client

--p11-pin string P11 Pin

--p11-slot int P11 token slot

--port int TCP Port for gRPC service (default 31400)

 --provider string Provider (default "p11")

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
9

9. Create a new Dockerfile or edit the already available Dockerfile under k8s-kms-plugin directory that will
create a docker image containing k8s-kms-plugin and all required resources for Luna HSM Client to
communicate with the Luna HSM partition.

Ensure that you are providing the correct file name and path for all required resources which are copying
from host to docker image.

cat Dockerfile

Build Stage

FROM goboring/golang:1.14.6b4 as build

WORKDIR /app

ADD go.mod /app/go.mod

ADD go.sum /app/go.sum

ADD tools.go /app/pkg/tools.go

ADD vendor /app/vendor

ADD pkg /app/pkg

ADD apis /app/apis

ADD cmd/ /app/cmd/

ENV GOOS linux

ENV GOARCH amd64

ENV CGO_ENABLED 1

ENV GOFLAGS -mod=vendor

RUN go build -o k8s-kms-plugin ./cmd/k8s-kms-plugin

Plugin Server

FROM goboring/golang:1.14.6b4 as kms-server

WORKDIR /

COPY --from=build /app/k8s-kms-plugin /k8s-kms-plugin

COPY LunaClient-Minimal-10.2.0-111.x86_64.tar /tmp/

RUN mkdir -p /usr/safenet/lunaclient

RUN mkdir -p /usr/safenet/lunaclient/cert

RUN mkdir -p /usr/safenet/lunaclient/cert/client

RUN mkdir -p /usr/safenet/lunaclient/cert/server

RUN tar -xvf /tmp/LunaClient-Minimal-10.2.0-111.x86_64.tar --strip 1 -C
/usr/safenet/lunaclient

RUN cp /usr/safenet/lunaclient/openssl.cnf /usr/safenet/lunaclient/bin

ENV ChrystokiConfigurationPath=/etc

COPY Chrystoki.conf /etc/Chrystoki.conf

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
10

COPY server/CAFile.pem /usr/safenet/lunaclient/cert/server

COPY client/k8s-master.kube.comKey.pem /usr/safenet/lunaclient/cert/client

COPY client/k8s-master.kube.com.pem /usr/safenet/lunaclient/cert/client

COPY start.sh /start.sh

RUN chmod +x /start.sh

ENTRYPOINT ["/start.sh"]

10. Create an image with docker build command and Dockerfile:

docker build . -t kms-server

You will see a confirmation message similar to the following when the image is built successfully.

11. The image kms-server will be listed along with other images:

docker images

The created image will be listed along with other images. The output will be similar to the following:

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
11

12. Create the pod manifest yaml file kms-plugin.yaml and ensure that the file has the following contents:

cat kms-plugin.yaml

apiVersion: v1

kind: Pod

metadata:

 name: k8s-kms-plugin-server

 labels:

 app.kubernetes.io/name: k8s-kms-plugin-server

spec:

 containers:

 - name: plugin-server

 image: "kms-server"

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - mountPath: /certs/

 name: certstore

 - mountPath: /tmp/run

 name: socket

 hostNetwork: true

 priorityClassName: system-node-critical

 volumes:

 - name: certstore

 emptyDir: {}

 - name: ca

 hostPath:

 path: /etc/

 - name: socket

 hostPath:

 path: /tmp/run

 type: DirectoryOrCreate

 status: {}

13. Copy the pod manifest kms-plugin.yaml to the kubernetes pod manifest location used by kubelet service
for running all the static pods.

cp kms-plugin.yaml /etc/kubernetes/manifests/

Where “/etc/kubernetes/manifest” is the static pod manifest location. Location for pod manifest may vary
for cluster deployment so ensure that you are using the correct location.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
12

14. Kubernetes will deploy k8s-kms-plugin pod automatically from pod manifest location. Verify the deployment
status:

kubectl get pods

15. On Master host, verify that the socket file is created under /tmp/run directory that you specified in kms-
plugin.yaml.

16. Connect the pod to verify that k8s-kms-plugin is integrated with Luna HSM and encryption key is generated.
Execute the following command on the master host to connect pod:

kubectl exec -it k8s-kms-plugin-server-k8s-master.kube.com -- /bin/bash

17. Verify that the pod have access to the Luna HSM partition:

/usr/safenet/lunaclient/bin/64/vtl listslots

18. Verify the contents of registered Luna HSM Partition to ensure that encryption key is generated on Luna
HSM via KMS-Plugin.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
13

KMS plugin is now configured to use the Luna HSM and UNIX socket “hsm-plugin-server.sock” is created
on Master Node where API Server is running and ready to serve the request from API Server.

Deploying K8S-KMS-Plugin as KMS Provider
Now we will deploy KMS-Plugin as the KMS provider and configure the API Server to use the KMS provider for

Kubernetes Secret encryption.

To deploy the K8S-KMS-Plugin as KMS Provider:

1. Create the encryption configuration file encryption-config.yaml when the KMS-Plugin is ready to use as an
encryption provider on all the same nodes as your API servers:

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: k8s-kms-plugin

 endpoint: unix:///tmp/run/hsm-plugin-server.sock

 cachesize: 100

 timeout: 3s

 - identity: {}

2. Save the encryption configuration file encryption-config.yaml at any location on the Master host. For
Example:

/etc/kubernetes/kms/encryption-config.yaml

3. Open the kube-apiserver.yaml file from static pod manifest path for editing and add the --encryption-
provider-config flag to the command list of kube-apiserver. The flag must point to the encryption-
config.yaml file. Here’s an example:

spec:

 containers:

 - command:

 - kube-apiserver

 - --encryption-provider-config=/etc/kubernetes/kms/encryption-config.yaml

 - --advertise-address=10.164.76.80

 - --allow-privileged=true

 - --authorization-mode=Node,RBAC

 ...

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
14

4. For kube-apiserver pod to communicate with the k8s-kms-plugin, access to the directories where
encryption-config.yaml file and UNIX socket is located are needed. To provide access, add mount points
in kube-apiserver.yaml as shown below and ensure the correct indentation:

...

volumeMounts:

- mountPath: /etc/kubernetes/kms

name: kms

readOnly: true

- mountPath: /tmp/run

name: socket

...

...

volumes:

- hostPath:

 path: /etc/kubernetes/kms

 type: DirectoryOrCreate

 name: kms

- hostPath:

 path: /tmp/run

 type: DirectoryOrCreate

 name: socket

...

5. Save and close the kube-apiserver.yaml file. The API server will be restarted automatically when you save
the changes. Ensure that your cluster back online without any failure and API Server is READY and
Running.

kubectl get pods --all-namespaces -o wide

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
15

6. Optionally, verify the API Server logs to ensure that API server is running with the encryption provider.

7. If API Server is configured successfully to use the k8s-kms-plugin, the connection will be established and
you will see similar to the following when running the below command on Master node:

ss -a --unix -p | grep hsm-plugin-server.sock

API sever is now configured to use k8s-kms-plugin as KMS Provider and k8s-kms-plugin is ready to serve the
request from API server for secret encryption and decryption.

Verifying Kubernetes Secret Encryption using KMS Provider
Kubernetes Secret is encrypted when written to etcd. After restarting your kube-apiserver, any newly created or

updated secret will be encrypted when stored. To verify, you can use the etcdctl command line program to

retrieve the contents of your secret. To Verify the Secret Encryption using KMS Provider:

1. Create a new secret called mysecret in the default namespace.

kubectl create secret generic mysecret -n default --from-
literal=mykey=mys3cr3t

The encrypted secret gets saved in the etcd.

2. Read the secret out of etcd using the etcdctl command line. The command is listed below with parameter
values. Ensure to change all parameter values as per your environment.

alias etcdctl3="ETCDCTL_API=3
/var/lib/docker/overlay2/b672106e8ed998f9a4a591175d0d79c5e0d64ecc4d465419aec43a
0458c9daf7/diff/usr/local/bin/etcdctl --endpoints="https://127.0.0.1:2379" --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --
key=/etc/kubernetes/pki/apiserver-etcd-client.key --
cacert=/etc/kubernetes/pki/etcd/ca.crt"

etcdctl3 get /registry/secrets/default/mysecret

You will see output similar to the example below:

3. Run the following command to ensure that stored secret is prefixed with the k8s:enc:kms:v1:k8s-kms-
plugin, which indicates that the KMS Provider has encrypted the resulting data.

etcdctl3 get /registry/secrets/default/mysecret | hexdump -C

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
16

4. Ensure that the secret is correctly decrypting when retrieved via the API Server.

kubectl describe secret mysecret -n default

5. Run the following command to encrypt all pre-existing secrets. The command reads all secrets and then
encrypt all secrets using KMS Provider.

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
17

If an error occurs due to a conflicting write, retry the command. For larger clusters, it is recommended to
subdivide the secrets by namespace or script an update. All secrets are now encrypted using key generated
on Luna HSM via k8s-kms-plugin. The secrets will be decrypted automatically via k8s-kms-plugin when
called by API Server.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
18

Switching from a local encryption provider to the KMS provider

If you have enabled the native encryption provider and want to migrate to KMS Provider to enhanced security.

To switch from a native encryption provider to the KMS provider and re-encrypt all of the secrets using KMS

provider perform the steps to Configuring Luna HSM with K8S-KMS-Plugin:

1. Edit the encryption configuration file encryption-config.yaml on the Master host. Add the KMS provider as
the first entry in the configuration file, as shown in the example below:

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: k8s-kms-plugin

 endpoint: unix:///tmp/run/socket.sock

 cachesize: 100

 timeout: 3s

 - aescbc:

 keys:

 - name: key1

 secret: <BASE 64 ENCODED SECRET>

 Where key1 is the name of your key and <BASE 64 ENCODED SECRET> is actual key of native

encryption provider. Ensure that the Unix Socket path is mounted in Kube-API server manifest yaml.

2. Restart all kube-apiserver processes.

3. Run the following command to force all secrets to be re-encrypted using the KMS Provider

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

This completes the Kubernetes Secret Encryption using k8s-kms-plugin as KMS Provider for secret encryption
and Luna HSM to secure the encryption keys on FIPS-validated hardware security modules and provide a
higher level of security than the locally-stored encryption keys.

Kubernetes Secrets Encryption: Integration Guide

Copyright © 2020 Thales Group
19

Contacting Customer Support
If you encounter a problem while installing, registering, or operating this product, refer to the documentation. If

you cannot resolve the issue, contact your supplier or Thales Customer Support. Thales Customer Support

operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan

arrangements made between Thales and your organization. Please consult this support plan for further

information about your entitlements, including the hours when telephone support is available to you.

Customer Support Portal
The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You

can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone Support
If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed on

the support portal.

Email Support
You can also contact technical support by email at technical.support.DIS@thalesgroup.com.

