

OpenSSL: Integration Guide
THALES LUNA HSM AND DPOD LUNA CLOUD HSM

Copyright © 2021 Thales Group
2

Document Information

Document Part Number 007-012068-001

Revision T

Release Date 5 October 2021

Trademarks, Copyrights, and Third-Party Software

Copyright © 2021 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Contents

Copyright © 2021 Thales Group
3

CONTENTS

Overview .. 4
Certified Platforms .. 4

Certified platforms on Luna HSM .. 4
Certified platforms on Luna Cloud HSM ... 5

Prerequisites .. 5
Configure Luna HSM .. 5
Configure Luna Cloud HSM service ... 6
Set up OpenSSL toolkit .. 9

Integrating Luna HSM with OpenSSL using GemEngine .. 10
Integrate OpenSSL with Luna HSM on UNIX ... 10
Integrate OpenSSL with Luna HSM on Windows ... 19

Troubleshooting ... 26
Contacting Customer Support .. 29

Customer Support Portal .. 29
Telephone Support ... 29
Email Support ... 29

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
4

Overview
This document contains steps to install, configure, and integrate OpenSSL with a Luna HSM or Luna Cloud

HSM service. OpenSSL is an open source project that consists of a cryptographic library and an SSL/TLS

toolkit. OpenSSL provides command-line tools for cryptographic operations including symmetric encryption,

public-key encryption, and digital signing hash.

Luna HSMs can be used to securely store the OpenSSL cryptographic keys. OpenSSL integrates with

GemEngine to consume HSM resources. The benefits of using Luna HSMs to generate the cryptographic keys

for OpenSSL are:

 Secure generation, storage and protection of the Identity signing private key on FIPS 140-2 level 3 validated

hardware

 Full life cycle management of the keys

 Significant performance improvements by off-loading cryptographic operations from application servers

 HSM audit trail*

* Luna Cloud HSM services do not have access to the secure audit trail.

Certified Platforms
This integration is certified on the following platforms:

Certified platforms on Luna HSM

Certified platforms on Luna Cloud HSM

Certified platforms on Luna HSM

HSM Type OpenSSL Toolkit Platforms

Luna HSM GemEngine 1.5 Windows Server 2019
RHEL 8

Luna HSM GemEngine 1.2
 GemEngine 1.3

 Windows Server 2019
 Windows Server 2016
 Windows Server 2012 R2
 RHEL 7

NOTE: This integration is tested with Luna Clients in HA and FIPS Mode.

Luna HSM: Luna HSM appliances are purposefully designed to provide a balance of security, high performance, and
usability that makes them an ideal choice for enterprise, financial, and government organizations. Luna HSMs
physically and logically secure cryptographic keys and accelerate cryptographic processing. Luna HSM on premise
offerings include the Luna Network HSM, Luna PCIe HSM, and Luna USB HSMs. Luna HSMs are also available for
access as an offering from cloud service providers such as IBM cloud HSM and AWS cloud HSM classic.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
5

Certified platforms on Luna Cloud HSM

HSM Type OpenSSL Toolkit Platforms

Luna Cloud HSM GemEngine 1.5 Windows Server 2019
RHEL 8

Luna Cloud HSM GemEngine 1.3 Windows Server 2019
 Windows Server 2016
 RHEL 7

Luna Cloud HSM: Luna Cloud HSM provides on-demand HSM and Key Management services through a

simple graphical user interface. With Luna Cloud HSM, security is simple, cost effective and easy to manage

because there is no hardware to buy, deploy and maintain. As an Application Owner, you click and deploy

services, generate usage reports and maintain just the services you need.

Prerequisites
Before you proceed with the integration, complete the following tasks:

Configure Luna HSM

Configure Luna HSM service

Set up OpenSSL toolkit

Configure Luna HSM

If you are using Luna HSM:

1. Verify that the HSM is set up, initialized, provisioned, and ready for deployment. Refer to the Luna HSM
documentation for more information.

2. Create a partition on the HSM that will be later used by OpenSSL.

3. If you are using a Luna Network HSM, register a client for the system and assign the client to the
partition to create an NTLS connection. Initialize the Crypto Officer and Crypto User roles for the
registered partition.

4. Ensure that each partition is successfully registered and configured. The command to see the registered
partitions is:

/usr/safenet/lunaclient/bin/lunacm

lunacm.exe (64-bit) v10.3.0-275. Copyright (c) 2020 SafeNet. All rights

reserved.

Available HSMs:

Slot Id -> 0

Label -> OPENSSL

Serial Number -> 1238686731832

Model -> LunaSA 7.7.1

Firmware Version -> 7.7.1

Bootloader Version -> 1.1.2

Configuration -> Luna User Partition With SO (PW) Key Export With

https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm
https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
6

Cloning Mode

Slot Description -> Net Token Slot

FM HW Status -> Non-FM

5. For PED-authenticated HSM, enable partition policies 22 and 23 to allow activation and auto-activation.

NOTE: Refer to Luna HSM documentation for detailed steps about creating NTLS
connection, initializing the partitions, and assigning various user roles.

Set up Luna HSM High-Availability

Refer to the Luna HSM documentation for HA steps and details regarding configuring and setting up two or

more HSM boxes on host systems. You must enable the HAOnly setting in HA for failover to work so that if the

primary goes down due to any reason all calls automatically route to the secondary until the primary recovers

and starts up.

Using Luna HSM in FIPS mode

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux

primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-

compliant HSM. If you are using the Luna HSM in FIPS mode, you have to make the following change in

configuration file:

For Linux

Misc = {

RSAKeyGenMechRemap = 1;

}

For Windows

[Misc]

RSAKeyGenMechRemap=1

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM is in

FIPS mode.

NOTE: The above setting is not required for Universal Client. This setting is applicable only
for Luna Client 7.x.

Configure Luna Cloud HSM service

You can configure Luna Cloud HSM Service in the following ways:

 Standalone Cloud HSM service using minimum client package

 Standalone Cloud HSM service using full Luna client package

 Luna HSM and Luna Cloud HSM service in hybrid mode

NOTE: Luna Client v10.x or higher is required for configuring Luna HSM device and Luna
Cloud HSM service in hybrid mode.

https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm
https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
7

Standalone Cloud HSM service using minimum client package

To configure Luna Cloud HSM service using minimum client package:

1. Transfer the downloaded .zip file to your Client workstation using pscp, scp, or other secure means.

2. Extract the .zip file into a directory on your client workstation.

3. Extract or untar the appropriate client package for your operating system. Do not extract to a new
subdirectory; place the files in the client install directory.

[Windows]

cvclient-min.zip

[Linux]

cvclient-min.tar

tar -xvf cvclient-min.tar

4. Run the setenv script to create a new configuration file containing information required by the Luna Cloud
HSM service.

[Windows]

Right-click setenv.cmd and select Run as Administrator.

[Linux]

Source the setenv script.

source ./setenv

5. Run the LunaCM utility and verify the Cloud HSM service is listed.

Standalone Cloud HSM service using full Luna client package

To configure Luna Cloud HSM service using full Luna client package:

1. Transfer the downloaded .zip file to your Client workstation using pscp, scp, or other secure means.

2. Extract the .zip file into a directory on your client workstation.

3. Extract or untar the appropriate client package for your operating system. Do not extract to a new
subdirectory; place the files in the client install directory.

[Windows]

cvclient-min.zip

[Linux]

cvclient-min.tar

tar -xvf cvclient-min.tar

4. Run the setenv script to create a new configuration file containing information required by the Luna Cloud
HSM service.

[Windows]

Right-click setenv.cmd and select Run as Administrator.

[Linux]

Source the setenv script.

source ./setenv

https://thalesdocs.com/gphsm/luna/10.2/docs/network/Content/Utilities/pscp.htm
https://thalesdocs.com/gphsm/luna/10.2/docs/network/Content/Utilities/pscp.htm

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
8

5. Copy the server and partition certificates from the Cloud HSM service client directory to Luna client
certificates directory:

NOTE: Skip this step for Luna Client v10.2 or higher.

Cloud HSM Certificates:

server-certificate.pem

partition-ca-certificate.pem

partition-certificate.pem

LunaClient Certificate Directory:

[Windows default location for Luna Client]

C:\Program Files\Safenet\Lunaclient\cert\

[Linux default location for Luna Client]

/usr/safenet/lunaclient/cert/

6. Open the configuration file from the Cloud HSM service client directory and copy the XTC and REST
section.

[Windows]

crystoki.ini

[Linux]

Chrystoki.conf

7. Edit the Luna Client configuration file and add the XTC and REST sections copied from Cloud HSM service
client configuration file.

8. Change server and partition certificates path from step 5 in XTC and REST sections. Do not change any
other entries provided in these sections.

NOTE: Skip this step for Luna Client v10.2 or higher.

[XTC]

. . .

PartitionCAPath=<LunaClient_cert_directory>\partition-ca-certificate.pem

PartitionCertPath00=<LunaClient_cert_directory>\partition-certificate.pem

. . .

[REST]

. . .

SSLClientSideVerifyFile=<LunaClient_cert_directory>\server-certificate.pem

. . .

9. Edit the following entry from the Misc section and update the correct path for the plugins directory:

Misc]

PluginModuleDir=<LunaClient_plugins_directory>

[Windows Default]

C:\Program Files\Safenet\Lunaclient\plugins\

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
9

[Linux Default]

/usr/safenet/lunaclient/plugins/

Save the configuration file. If you wish, you can now safely delete the extracted Cloud HSM service client
directory.

10. Reset the ChrystokiConfigurationPath environment variable and point back to the location of the Luna Client
configuration file.

Windows

In the Control Panel, search for "environment" and select Edit the system environment variables.

Click Environment Variables. In both list boxes for the current user and system variables,

edit ChrystokiConfigurationPath and point to the crystoki.ini file in the Luna client install directory.

Linux

Either open a new shell session, or export the environment variable for the current session pointing to the

location of the Chrystoki.conf file:

export ChrystokiConfigurationPath=/etc/

11. Run the LunaCM utility and verify that the Cloud HSM service is listed. In hybrid mode, both Luna and Cloud
HSM service will be listed.

NOTE: Follow the Luna Cloud HSM documentation for detailed steps for creating service,
client, and initializing various user roles.

Luna HSM and Luna Cloud HSM service in hybrid mode

To configure Luna HSM and Luna Cloud HSM service in hybrid mode, follow the steps mentioned under the

Standalone Cloud HSM service using full Luna client package section above.

NOTE: Luna Client v10.x or higher is required for configuring Luna HSM device and Luna
Cloud HSM service in hybrid mode.

To use Luna Cloud HSM Service in FIPS mode

Cloud HSM service operates in both FIPS and non-FIPS mode. If your organization requires non-FIPS

algorithms for your operations, enable the Allow non-FIPS approved algorithms check box when configuring

your Cloud HSM service. The FIPS mode is enabled by default. Refer to the Mechanism List in the SDK

Reference Guide for more information about available FIPS and non-FIPS algorithms.

Set up OpenSSL toolkit

Acquire the OpenSSL toolkit with GemEngine support from Thales Customer Support.

NOTE: The Doc ID for downloading the GemEngine v1.2 from support portal is KB0016309.
The Doc ID for downloading the GemEngine v1.3 from support portal is KB0017806.

The Doc ID for downloading the GemEngine v1.5 from support portal is KB0024584.

We recommend you familiarize yourself with OpenSSL. Refer to OpenSSL Documentation for more information

about OpenSSL.

https://thalesdocs.com/dpod/index.html
https://www.openssl.org/docs/

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
10

Integrating Luna HSM with OpenSSL using GemEngine
To integrate Luna HSM with OpenSSL using GemEngine, follow the steps mentioned below in accordance with

your environment configuration:

 Integrate OpenSSL with Luna HSM on UNIX

 Integrate OpenSSL with Luna HSM on Windows

Integrate OpenSSL with Luna HSM on UNIX

To integrate OpenSSL with Luna HSM on Unix, follow these steps:

 Install and configure OpenSSL toolkit

 Configure GemEngine to use Luna HSM on Unix

 Verify the OpenSSL and GemEngine Integration on Unix

Install and configure OpenSSL toolkit

To install and configure OpenSSL toolkit on Unix, follow the steps mentioned in one of the scenarios below, as

per your requirements:

 Scenario A: Integrate pre-built dynamic engine with an existing installation of OpenSSL

 Scenario B: Compile the dynamic engine and integrating with an existing installation of OpenSSL

 Scenario C: Compile and install OpenSSL from source and compiling and installing GemEngine

 Scenario D: Configure OpenSSL to enable GemEngine by default

Scenario A: Integrate pre-built dynamic engine with an existing installation of OpenSSL

1. Extract the GemEngine toolkit and navigate to the GemEngine directory.

2. Locate the libgem.so and sautil files in:

builds/linux/<distributor>/<bit_version>/<OpenSSL_version>

Example:

builds/linux/rhel/64/1.0

NOTE: Locate the correct dynamic engine library libgem.so in the correct
<OpenSSL_version> directory. For OpenSSL version 1.1.1x, the dynamic engine library is
gem.so.

3. Use gembuild to locate the OpenSSL Engines directory.

./gembuild locate-engines

"/usr/local/lib64/engines"

4. Copy the libgem.so or gem.so to the engines directory and test engine.

Example:

cp builds/linux/rhel/64/1.0.1/libgem.so /usr/local/lib64/engines/

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
11

5. Verify the GemEngine is present.

openssl engine gem –v

(gem) Gem engine support

enginearg, openSession, closeSession, login, logout, engineinit,

CONF_PATH, ENGINE_INIT, ENGINE2_INIT, engine2init, DisableCheckFinalize

SO_PATH, GET_HA_STATE, SET_FINALIZE_PENDING, SKIP_C_INITIALIZE,

IntermediateProcesses

If the output looks as above, then the GemEngine is successfully installed.

6. Copy the sautil utility to /usr/local/bin

Example:

cp builds/linux/rhel/64/1.0.1/sautil /usr/local/bin

/usr/local/bin/sautil

Scenario B: Compile the dynamic engine and integrating with an existing installation of OpenSSL

NOTE: Ensure the system has a C compiler and access to the make utility.

1. Download and extract the OpenSSL source tarball. We recommend the version that is closest to your
existing OpenSSL installation (run openssl version).

Example:

Download openssl-x.x.xx.tar.gz from https://www.openssl.org/source/

tar xvfz openssl-x.x.xx.tar.gz

NOTE: Ensure you download a supported OpenSSL version. See Error! Reference source n
ot found. and Certified Platforms for more information about supported OpenSSL and
GemEngine toolkit versions.

2. Locate the OpenSSL engine directory.

./gembuild locate-engines

3. Run gembuild config.

Example:

./gembuild config --openssl-source=/home/openssl-x.x.xx --openssl-

engines=/usr/lib64/openssl/engines --config-bits=64

NOTE: If the OpenSSL development package is not available, you need to install it on the
system. This example command assumed that the OpenSSL headers directory is located in
/usr/include. If the header files are located in a different location, the --openssl-includes
option can be used. The --openssl-libs options can be used to specify the location of the lib
directory with libcrypto.so. All paths need to be absolute.

4. Install the required EC header files.

/gembuild openssl-ec-headers

5. Compile the engine.

https://www.openssl.org/source/

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
12

./gembuild engine-build

NOTE: If you encounter error in this step, refer to Problem in the Troubleshooting section.

6. Install and test the engine.

./gembuild engine-install

openssl engine gem –v

gem) Gem engine support

enginearg, openSession, closeSession, login, logout, engineinit,

CONF_PATH, ENGINE_INIT, ENGINE2_INIT, engine2init, DisableCheckFinalize,

SO_PATH, GET_HA_STATE, SET_FINALIZE_PENDING, SKIP_C_INITIALIZE

7. Compile and install sautil. By default this will install the sautil command to /usr/local/bin/sautil. If a different

location is desired, use the --sautil-prefix option to specify the desired directory either by redoing STEP 3
with the option or by specifying the option as part of the ./gembuild sautil-install command.

./gembuild sautil-build

./gembuild sautil-install

Scenario C: Compile and install OpenSSL from source and compiling and installing GemEngine

1. Download and extract the OpenSSL source tarball.

Example:

Download openssl-x.x.xx.tar.gz from https://www.openssl.org/source/

tar xvfz openssl-x.x.xx.tar.gz

2. If using FIPS download and extract the OpenSSL FIPS module. If not using FIPS proceed to step 3.

Example:

Download openssl-fips-2.0.x.tar.gz from https://www.openssl.org/source/

tar xvfz openssl-fips-2.0.x.tar.gz

3. Run gembuild config using the --prefix option. If using the FIPS module, add the --openssl-fips-
source=/home/openssl-fips-2.0.x to the ./gembuild config command.

Example:

./gembuild config --openssl-source=/home/openssl-x.x.xx --prefix=/usr/local -

-config-bits=64

NOTE: If you are using GemEngine 1.3 or above and OpenSSL 1.0.2x, then use the option --
compat-102 in the above command.

4. If using FIPS, compile and install the FIPS module. If not using FIPS, proceed to step 5.

FIPS:

./gembuild openssl-fips-build

./gembuild openssl-fips-install

5. Compile and install the OpenSSL module.

./gembuild openssl-build

https://www.openssl.org/source/
https://www.openssl.org/source/

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
13

./gembuild openssl-install

6. Compile and install gem dynamic engine and verify the engine.

./gembuild engine-build

NOTE: If you encounter error in this step, refer to Problem 2 and 3 in the Troubleshooting
section.

./gembuild engine-install

/usr/local/ssl/bin/openssl engine gem –v

(gem) Gem engine support

enginearg, openSession, closeSession, login, logout, engineinit,

CONF_PATH, ENGINE_INIT, ENGINE2_INIT, engine2init, DisableCheckFinalize,

SO_PATH, GET_HA_STATE, SET_FINALIZE_PENDING, SKIP_C_INITIALIZE

7. Compile and install sautil.

./gembuild sautil-build

./gembuild sautil-install

NOTE: This installs the sautil utility to <prefix>/sautil/bin/sautil where <prefix> is the directory
specified with the –prefix option in step 3.

If you require a different location include the –sautil-prefix option to specify the desired
directory as part of the /gembuild sautil –install command.

8. Add openssl and sautil to PATH

Example:

export PATH=/usr/local/ssl/bin:/usr/local/sautil/bin:$PATH

9. Add openssl library to LD_LIBRARY_PATH

Example:

export LD_LIBRARY_PATH=/usr/local/ssl/lib:$LD_LIBRARY_PATH

Scenario D: Configure OpenSSL to enable GemEngine by default

This integration assumes that OpenSSL with GemEngine is installed at /usr/local/ssl/bin/openssl

1. Locate the openssl.cnf and engines directory.

openssl version -d

OPENSSLDIR: "/usr/local/ssl"

This provides the location of the OpenSSL directory.

./gembuild locate-engines

This gives the location of the directory where the libgem.so or gem.so should be located.

NOTE: This is the OpenSSL that is set to the PATH. Run which openssl to verify you are
accessing the correct configuration file.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
14

2. Edit the openssl.cnf file.

Example:

Insert near top of file openssl.cnf:

openssl_conf = openssl_init

Insert at bottom of file openssl.cnf:

[openssl_init]

engines = engine_section

[engine_section]

gem = gem_section

[gem_section]

dynamic_path = /usr/local/ssl/lib/engines/libgem.so

default_algorithms = ALL

NOTE: Make sure to give correct dynamic engine library in dynamic_path.

3. Verify the engine is loaded without specifying it.

openssl engine -v

(dynamic) Dynamic engine loading support

SO_PATH, NO_VCHECK, ID, LIST_ADD, DIR_LOAD, DIR_ADD, LOAD

(gem) Gem engine support

enginearg, openSession, closeSession, login, logout, engineinit,

CONF_PATH, ENGINE_INIT, ENGINE2_INIT, engine2init, DisableCheckFinalize,

SO_PATH, GET_HA_STATE, SET_FINALIZE_PENDING, SKIP_C_INITIALIZE,

4. Test the application by generating a certificate request using RSA key.

openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout privateKey.key

Configure GemEngine to use Luna HSM on Unix

To configure GemEngine to use Luna HSM on Unix, complete one of the following tasks, depending on your

requirements:

Configure GemEngine for Luna HSM

Configure GemEngine for Luna HA slot or Luna Cloud HSM service

Configure GemEngine for Luna HSM (single partition)

To configure GemEngine for Luna HSM (single partition):

1. Open the /etc/Chrystoki.conf file and add the following GemEngine section:

GemEngine = {

LibPath = /usr/safenet/lunaclient/lib/libCryptoki2.so;

LibPath64 = /usr/safenet/lunaclient/lib/libCryptoki2_64.so;

EnableDsaGenKeyPair = 1;

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
15

EnableRsaGenKeyPair = 1;

DisablePublicCrypto = 1;

EnableRsaSignVerify = 1;

EnableLoadPubKey = 1;

EnableLoadPrivKey = 1;

DisableCheckFinalize = 1;

DisableEcdsa = 1;

DisableDsa = 0;

DisableRand = 0;

EngineInit = <slot_id>:10:11;

}

2. Run the sautil utility to open the persistent sautil session on Luna HSM slot.

/usr/local/sautil/bin/sautil -v -s <slot_id> -i 10:11 -o –q

NOTE: For more login methods for session refer to the README-GEM-CONFIG file present
in the <GemEngine_Directory>/docs folder.

Configure GemEngine for Luna HA slot or Luna Cloud HSM service

1. Create a text file and store the partition password in it.

echo <partition_password> > <path_to_my_passfile>/passfile

2. Open the /<ChrystokiConfigurationFile_Directory>/Chrystoki.conf file and add the following code to the
GemEngine section:

GemEngine = {

LibPath = <path to LibCryptoki2.so>;

LibPath64 = <path to LibCryptoki2.so>;

EnableDsaGenKeyPair = 1;

EnableRsaGenKeyPair = 1;

DisablePublicCrypto = 1;

EnableRsaSignVerify = 1;

EnableLoadPubKey = 1;

EnableLoadPrivKey = 1;

DisableCheckFinalize = 1;

DisableEcdsa = 1;

DisableDsa = 0;

DisableRand = 0;

EngineInit = "<Partition Label>":0:0:passfile=<path_to_my_passfile>/passfile;

EnableLoginInit = 1;

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
16

3. If you are using Luna Cloud HSM, then open /<ChrystokiConfigurationFile_Directory>/Chrystoki.conf file
and add the following code inside the Misc section:

Misc = {

 FinalizeOnClose = 1;

}

Verify the OpenSSL and GemEngine Integration on Unix

Complete the following to verify the OpenSSL and GemEngine integration on Unix:

 Generate cryptographic objects for OpenSSL CMS

 Use OpenSSL CMS cryptographic objects to sign, verify, encrypt, and decrypt a message

Generate cryptographic objects for OpenSSL CMS

Generate the CA private key and CA certificate for OpenSSL CMS and then use the CA private key and

certificate to generate the receiver and sender certificates. To generate cryptographic objects for OpenSSL

CMS:

1. Open the /< OPENSSLDIR>/openssl.cnf file in a text editor and edit the [CA_default] section. Make the
following changes:

dir = /usr/local/ssl

new_certs_dir = $dir/certs

NOTE: You can change dir to the directory of your choice, but make sure to use correct path
in the subsequent steps.

2. Create the text files /usr/local/ssl/index.txt and /usr/local/ssl/serial.

3. Open the /usr/local/ssl/serial file and write 01 at the top and press enter. Save the file.

4. Create a 2048-bit private key using GemEngine

openssl genrsa -engine gem 2048

This generates a RSA 2048 CA private key on the Luna HSM or Luna Cloud HSM service.

5. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

For example:

/usr/safenet/lunaclient/bin/cmu list

Provide partition password when prompted.

6. Create a CA certificate based on the generated key that is used for signing other certificates:

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -out

/usr/local/ssl/certs/ca.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the CA private

key on the Luna HSM or Luna Cloud HSM service created in step 4.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
17

7. Create a directory to generate the certificate request for sender and receiver.

mkdir /usr/local/ssl/certs/sender

mkdir /usr/local/ssl/certs/receiver

8. Generate a certificate request for sender.

openssl req -engine gem -newkey rsa:2048 -out

/usr/local/ssl/certs/sender/sender.txt

Sender request is used to generate the sender’s certificate signed by the Certificate Authority.

9. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

For example:

/usr/safenet/lunaclient/bin/cmu list

Provide partition password when prompted.

10. Generate a certificate request for receiver.

openssl req -engine gem -newkey rsa:2048 -out

/usr/local/ssl/certs/receiver/receiver.txt

Receiver request is used to generate the receiver’s certificate signed by the Certificate Authority.

11. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

For example:

/usr/safenet/lunaclient/bin/cmu list

Provide partition password when prompted.

12. Sign the certificate request for Sender by CA (Certificate Authority).

openssl ca -engine gem -policy policy_anything -cert

/usr/local/ssl/certs/ca.cer -in /usr/local/ssl/certs/sender/sender.txt -keyfile

rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -out

/usr/local/ssl/certs/sender/sender.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the ca private key
on the Luna HSM or Luna Cloud HSM service created in step 4.

13. Sign the certificate request for Receiver by CA (Certificate Authority).

openssl ca -engine gem -policy policy_anything -cert

/usr/local/ssl/certs/ca.cer -in /usr/local/ssl/certs/receiver/receiver.txt -

keyfile rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -

out /usr/local/ssl/certs/receiver/receiver.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the ca private key
on the Luna HSM or Luna Cloud HSM service created in step 4.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
18

Use OpenSSL CMS cryptographic objects to sign, verify, encrypt, and decrypt a message

The sender will send a message to the receiver by signing the message with its own private key and encrypting
the message with the receiver’s public key. The receiver then decrypts the message using its own private key
and verifies the message using the sender’s public key. To do so, follow the below steps:

1. Create a text file message.txt.

NOTE: Sender and Receiver keys are stored on the Luna HSM or Luna Cloud HSM
service. Use the object label of those keys to encrypt, decrypt and sign using those keys

2. Sign the message.txt file using the sender’s private key.

openssl cms -engine gem -sign -in message.txt -signer

/usr/local/ssl/certs/sender/sender.cer -inkey rsa-private-

7dfdb3caaf25a63b3d8a81d2a3b51668decafe0f -keyform engine -out sendmail.msg

Where rsa-private-7dfdb3caaf25a63b3d8a81d2a3b51668decafe0f is the object label for the sender private
key on the Luna HSM or Luna Cloud HSM service.

3. Encrypt the sendmail.msg using the receiver’s public key, supplied with the receiver’s certificate.

openssl cms -engine gem -encrypt -in sendmail.msg -out sendmail_enc.msg

/usr/local/ssl/certs/receiver/receiver.cer

4. Decrypt the sendmail_enc.msg using the receiver’s private key.

openssl cms -engine gem -decrypt -in sendmail_enc.msg -inkey rsa-private-

ec0fcb1ce9114662556caab35fc2baf0565752ec -keyform engine -out sendmail_dec.msg

Where rsa-private-ec0fcb1ce9114662556caab35fc2baf0565752ec is the object label for the receiver private
key on the Luna HSM or Luna Cloud HSM service.

5. Verify the signature of sendmail_dec.msg using the sender’s certificate.

openssl cms -engine gem -verify -in sendmail_dec.msg -CAfile

/usr/local/ssl/certs/ca.cer -out out.txt /usr/local/ssl/certs/sender/sender.cer

6. Open the out.txt and verify the message which you have typed in the message.txt

7. Close the sautil session if you are using Luna HSM slot.

/usr/local/sautil/bin/sautil -c -s <slot_id> -i 10:11 –q

This completes the integration of OpenSSL with Luna Network HSM or a Luna Cloud HSM service using
GemEngine on UNIX.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
19

Integrate OpenSSL with Luna HSM on Windows

To integrate OpenSSL with Luna HSM using GemEngine, follow these steps:

 Install and configure OpenSSL toolkit

 Configure GemEngine to use Luna HSM

 Verify the OpenSSL and GemEngine integration on Windows

Install and configure OpenSSL toolkit

To install and configure the OpenSSL toolkit on Windows:

1. Navigate to the OpenSSL toolkit gemengine-1.x\builds\win and extract the file sautil-win64-openssl-
x.x.xx.tar.gz and ssl-win64-openssl-x.x.xx.tar.gz in a folder C:\

2. Add C:\cygwin\usr\local\sautil\bin and C:\cygwin\usr\local\ssl\bin to your system path (Control Panel ->

System -> Change Settings -> Advanced -> Environment Variables -> System Variables).

NOTE: We recommend adding these files to the Path. This step is not mandatory.

3. Create the directory C:\ssl. C:\ssl is the common working directory for the Windows installation.

4. Create an openssl.cnf file under the working directory. Copy and paste the following in the openssl.cnf file
and save it as C:\ssl\openssl.cnf:

SSLeay example configuration file.

 # This is mostly being used for generation of certificate requests.

 #

 RANDFILE = .rnd

 ##

 [ca]

 default_ca = CA_default # The default ca section

 ##

 [CA_default]

certs = certs # Where the issued certs are kept

crl_dir = crl # Where the issued crl are kept

database = index.txt # database index file.

new_certs_dir = certs # default place for new certs.

certificate = cacert.pem # The CA certificate

serial = serial.txt # The current serial number

crl = crl.pem # The current CRL

private_key = private\cakey.pem # The private key

RANDFILE = private\private.rnd # private random number file

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
20

x509_extensions = x509v3_extensions # The extentions to add to the cert

default_days = 365 # how long to certify for

default_crl_days= 30 # how long before next CRL

default_md = md5 # which md to use.

preserve = no # keep passed DN ordering

 # A few different ways of specifying how similar the request should look

 # For type CA, the listed attributes must be the same, and the optional

 # and supplied fields are just that :-)

 policy = policy_match

 # For the CA policy

 [policy_match]

 countryName = match

 stateOrProvinceName = match

 organizationName = match

 organizationalUnitName = match

 commonName = supplied

 emailAddress = optional

 # For the 'anything' policy

 # At this point in time, you must list all acceptable 'object'

 # types.

 [policy_anything]

 countryName = optional

 stateOrProvinceName = optional

 localityName = optional

 organizationName = optional

 organizationalUnitName = optional

 commonName = supplied

 emailAddress = optional

 ##

 [req]

 default_bits = 1024

 default_keyfile = privkey.pem

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
21

 distinguished_name = req_distinguished_name

 attributes = req_attributes

 [req_distinguished_name]

 countryName = Country Name (2 letter code)

 countryName_min = 2

 countryName_max = 2

 stateOrProvinceName = State or Province Name (full name)

 localityName = Locality Name (eg, city)

 0.organizationName = Organization Name (eg, company)

 organizationalUnitName = Organizational Unit Name (eg, section)

 commonName = Common Name (eg, your website's domain name)

 commonName_max = 64

 emailAddress = Email Address

 emailAddress_max = 40

 [req_attributes]

 challengePassword = A challenge password

 challengePassword_min = 4

 challengePassword_max = 20

 [x509v3_extensions]

 # under ASN.1, the 0 bit would be encoded as 80

 # nsCertType = 0x40

 #nsBaseUrl

 #nsRevocationUrl

 #nsRenewalUrl

 #nsCaPolicyUrl

 #nsSslServerName

 #nsCertSequence

 #nsCertExt

 #nsDataType

NOTE: You can configure the toolkit using the openssl.cnf file.

5. Set the OpenSSL configuration file path. Execute the following in the command prompt:

set OPENSSL_CONF=C:\ssl\openssl.cnf

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
22

Configure GemEngine to use Luna HSM on Windows

To configure GemEngine to use Luna HSM on Windows, complete one of the following tasks, depending on

your requirements:

Configure GemEngine for Luna HSM

Configure GemEngine for Luna HA slot or Luna Cloud HSM service

Configure GemEngine for Luna HSM

To configure GemEngine for Luna HSM (single partition):

1. Open the crystoki.ini file and add the following GemEngine section:

 [GemEngine]

 LibPath = <Luna Client installation Directory>\cryptoki.dll

 LibPath64 = <Luna Client installation Directory>\cryptoki.dll

 EnableDsaGenKeyPair = 1

 EnableRsaGenKeyPair = 1

 DisablePublicCrypto = 1

 EnableRsaSignVerify = 1

 EnableLoadPubKey = 1

 EnableLoadPrivKey = 1

 DisableCheckFinalize = 1

 DisableEcdsa = 1

 DisableDsa = 0

 DisableRand = 0

EngineInit = <slot_id>:10:11

2. Run the sautil utility to open the persistent sautil session on Luna HSM slot.

C:\OpenSSL\sautil\bin>sautil -v -s <slot_id> -i 10:11 –o –q

NOTE: For more login methods for session, refer to the README-GEM-CONFIG file present
in <GemEngine_Directory>\docs folder.

Configure GemEngine for Luna HA slot or Luna Cloud HSM service

1. Create a text file passfile in <path_to_my_passfile> and store the partition password in it.

2. Open the crystoki.ini file and add the following GemEngine section:

 [GemEngine]

 LibPath = <Path to cryptoki.dll>

 LibPath64 = <Path to cryptoki.dll>

 EnableDsaGenKeyPair = 1

 EnableRsaGenKeyPair = 1

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
23

 DisablePublicCrypto = 1

 EnableRsaSignVerify = 1

 EnableLoadPubKey = 1

 EnableLoadPrivKey = 1

 DisableCheckFinalize = 1

 DisableEcdsa = 1

 DisableDsa = 0

 DisableRand = 0

 EngineInit = "myTokenLabel":0:0:passfile=<path_to_my_passfile>\passfile

 EnableLoginInit = 1

Verify the OpenSSL and GemEngine integration on Windows

Complete the following to verify the OpenSSL and GemEngine integration:

 Generate cryptographic objects for OpenSSL CMS

 Use OpenSSL CMS cryptographic objects to sign, verify, encrypt, and decrypt a message

Generate cryptographic objects for OpenSSL CMS

Generate the CA private key and CA certificate for OpenSSL CMS and then use the CA private key and

certificate to generate the receiver and sender certificates. To generate cryptographic objects for OpenSSL

CMS:

1. Set the crystoki.ini path to use with OpenSSL:

set CONF_PATH=<Luna Client installation Directory>\crystoki.ini

2. Create the following directories for OpenSSL operations:

C:\ssl>mkdir keys

C:\ssl>mkdir requests

C:\ssl>mkdir certs

3. Create the file index.txt – an empty (zero-byte) text file under C:\ssl\index.txt

4. Create the serial number file serial.txt. This is a plain ASCII file containing the string 01 on the first line,
followed by a new line under C:\ssl\serial.txt.

5. Copy the libeay32.dll and the ssleay32.dll library to the directory containing sautil.exe.

NOTE: Skip this step if you are using GemEngine 1.3 or above.

6. Create a 2048-bit private key on Luna HSM using GemEngine. This key pair will later be used to create the
CA.

C:\ssl>openssl genrsa -engine gem 2048

The RSA 2048 bit key for CA is generated on the Luna HSM partition or Luna Cloud HSM service.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
24

7. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

For example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide partition password when prompted.

8. Create a CA certificate based on the generated key:

C:\ssl>openssl req -engine gem -new -x509 -days 365 -key rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out certs/ca.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA private
key on the Luna HSM or Luna Cloud HSM service created in step 6.

9. Create a certificate request for sender.

C:\ssl>openssl req -engine gem -newkey rsa:2048 -out requests/sender.txt

Sender request is used to generate the sender’s certificate signed by the Certificate Authority.

10. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

For example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide partition password when prompted.

11. Create a certificate request for receiver.

C:\ssl>openssl req -engine gem -newkey rsa:2048 -out requests/receiver.txt

Receiver request is used to generate the receiver’s certificate signed by the Certificate Authority.

12. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

For example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide the partition password when prompted.

13. Use the Certificate Authority (CA) to sign the certificate request for Sender.

C:\ssl>openssl ca -engine gem -policy policy_anything -cert certs/ca.cer -in

requests/sender.txt -keyfile rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out certs/sender.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA private
key on the Luna HSM or HSM on Luna Cloud HSM service created in step 6.

14. Use the Certificate Authority (CA) to sign the certificate request for Receiver.

C:\ssl>openssl ca -engine gem -policy policy_anything -cert certs/ca.cer -in

requests/receiver.txt -keyfile rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out

certs/receiver.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA private
key on the Luna HSM or HSM on Luna Cloud HSM service created in step 6.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
25

Use OpenSSL CMS cryptographic objects to sign, verify, encrypt, and decrypt a message

The sender will send a message to the receiver by signing the message with its own private key and encrypting
the message with the receiver’s public key. The receiver then decrypts the message using its own private key
and verifies the message using the sender’s public key. To do so, follow the below steps:

1. Create the text file message.txt in the C:\ssl directory.

NOTE: Sender and Receiver keys are stored on the Luna HSM or Luna Cloud HSM
service. Use the object label of those keys to encrypt, decrypt, and sign using those keys.

2. Sign the message.txt using the sender’s private key.

C:\ssl>openssl cms -engine gem -sign -in message.txt -signer certs\sender.cer -

inkey rsa-private-605ddfab1e95bfac36eec44f291647e8a3ff5f64 -keyform engine -out

sendmail.msg

Where rsa-private-605ddfab1e95bfac36eec44f291647e8a3ff5f64 is the object label for the sender’s private
key on the Luna HSM or Luna Cloud HSM service.

3. Encrypt the sendmail.msg using the receiver’s public key, supplied with the receiver’s certificate.

C:\ssl>openssl cms -engine gem -encrypt -in sendmail.msg -out sendmail_enc.msg

certs\receiver.cer

4. Decrypt the sendmail_enc.msg using the receiver’s private key.

C:\ssl>openssl cms -engine gem -decrypt -in sendmail_enc.msg -inkey rsa-

private-a216d3b9276268459598f163ff7163aa30cbd3d0 -keyform engine -out

sendmail_dec.msg

Where rsa-private-a216d3b9276268459598f163ff7163aa30cbd3d0 is the object label for the receiver’s

private key on the Luna HSM or Luna Cloud HSM service.

5. Now verify the signature of sendmail_dec.msg using the sender’s public key supplied with sender’s
certificate.

C:\ssl>openssl cms -engine gem -verify -in sendmail_dec.msg -CAfile

certs\ca.cer -out out.txt certs\sender.cer

6. Open the out.txt and verify the message which you have typed in the message.txt.

7. If you are using Luna HSM partition, close the session with sautil.

C:\OpenSSL\sautil\bin>sautil -c -s <slot_id> -i 10:11 –q

This completes the integration of OpenSSL with Luna Network HSM or Luna Cloud HSM service using

GemEngine on Windows.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
26

Troubleshooting

Problem 1

SAUTIL not found on your system. If OpenSSL was previously installed, or you have patched the Luna Engine

in the OpenSSL source code, then the SAUTIL utility will not be available on the system.

Solution

SAUTIL is installed by default with OpenSSL when you install the OpenSSL from Apache Toolkit. If SAUTIL is

not available, you can install it by completing the following:

1. Traverse to the toolkit and untar the luna-samples file.

2. Under the luna-samples, you will find sautil. Under sautil, you will find the sautil.c file.

3. Open the sautil.c, search for “#define LUNA_OSSL_ECDSA (1)”, and disable it.

4. Save and close the file and run the following commands in sautil directory under luna-samples.

./configure.sh

make

5. Verify /usr/local/sautil/bin/sautil is installed on your system.

Problem 2

OpenSSL source installation fails with the following error using gembuild script provided with OpenSSL toolkit:

make[2]: *** No rule to make target `../../include/openssl/idea.h', needed by

`e_idea.o'. Stop.

make[2]: Leaving directory `/home/openssl-1.0.1s/crypto/evp'

make[1]: *** [subdirs] Error 1

make[1]: Leaving directory `/home/openssl-1.0.1s/crypto'

make: *** [build_crypto] Error 1

ERROR: There was an issue compiling OpenSSL. See /home/gemengine-1.1/logs/openssl-

build.log for details.

Solution

Add make depend to the gembuild script on line 453 right after the make clean. The error is the result of a

recent change in OpenSSL that requires make depend to be run before make install.

Problem 3

OpenSSL sign operation is showing Segmentation fault (core dumped) error, when using OpenSSL v1.1.0 with

GemEngine.

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

d6b5261ac7f89d6b3b80d4c0f8aea11f185b95a1 -keyform engine -out

/usr/local/ssl/certs/ca.cer

engine "gem" set.

You are about to be asked to enter information that will be incorporated

into your certificate request.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
27

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IN

State or Province Name (full name) []:Uttar Pradesh

Locality Name (eg, city) []:Noida

Organization Name (eg, company) []: Thales

Organizational Unit Name (eg, section) []: HSM

Common Name (eg, your websites domain name) []:ca.example.com

Email Address []:

Segmentation fault (core dumped)

Solution

This error occurs when the GemEngine calls the function luna_fini_p11 while in the execution path of exit().

Complete the following procedure to overcome the error.

1. Open the <gemengine directory>/engine/e_gem.c file in vi editor.

vi /home/gemengine-1.3/engine/e_gem.c

2. At line 934 comment the function as follows:

//luna_fini_p11();

3. Save and close the file.

4. Remove the gem.so from OpenSSL engine directory.

rm -rf /usr/local/ssl/lib/engines-1.1/gem.so

5. Recompile the gem.so.

./gembuild engine-build

./gembuild engine-install

8. Rerun the OpenSSL sign operation command that was showing the Segmentation Fault earlier.

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

d6b5261ac7f89d6b3b80d4c0f8aea11f185b95a1 -keyform engine -out

/usr/local/ssl/certs/ca.cer

engine "gem" set.

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
28

Country Name (2 letter code) []:IN

State or Province Name (full name) []:Uttar Pradesh

Locality Name (eg, city) []:Noida

Organization Name (eg, company) []:Thales

Organizational Unit Name (eg, section) []:HSM

Common Name (eg, your websites domain name) []:ca.example.com

Email Address []:

Certificate signing gets completed without showing Segmentation Fault.

OpenSSL: Integration Guide

Copyright © 2021 Thales Group
29

Contacting Customer Support
If you encounter a problem during this integration, contact your supplier or Thales Customer Support. Thales

Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is governed by

the support plan arrangements made between Thales and your organization. Please consult this support plan

for further information about your entitlements, including the hours when telephone support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You

can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed on

the support portal.

Email Support

You can also contact technical support by email at technical.support.DIS@thalesgroup.com.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/
mailto:technical.support.DIS@thalesgroup.com

