

Microsoft SQL Server Always Encrypted:
Integration Guide

THALES LUNA HSM

Copyright © 2022 Thales Group
2

Document Information

Document Part Number 007-001504-001

Revision A

Release Date 14 January 2022

Trademarks, Copyrights, and Third-Party Software

Copyright © 2021 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
3

CONTENTS

Overview .. 4
Third Party Application Details .. 4
SQL Server Always Encrypted Setup .. 5

Using Multiple Clients Application Servers ... 5
Certified Platforms .. 6
Prerequisites .. 6

Configuring Luna HSM .. 6
Integrating Luna HSM with SQL Server Always Encrypted .. 7

Configure SafeNet KSP ... 8
Create a Sample Database ... 10
Generate Column Master Key ... 12
Generate Column Encryption Key.. 16
Encrypt Columns using Always Encrypted Keys .. 18
View Always Encrypted Data ... 20
Rotate Always Encrypted Key.. 25
Remove Always Encrypted Column Encryption.. 32

Contacting Customer Support ... 37
Customer Support Portal ... 37
Telephone Support .. 37
Email Support.. 37

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
4

Overview
This document contains instructions for integrating Microsoft SQL Server Always Encrypted with Luna HSM

devices. In case of Microsoft SQL Server Always Encrypted, the term “Always” implies that data is encrypted all

the time; not just at rest, but also during flight. Furthermore, the encryption keys themselves – which are

essential for both encrypting and decrypting – are not stored in the database. Those keys stay with you, at the

client side. Data when it arrives at the client can be decrypted on the client and by the client, who possesses the

necessary keys. Likewise, when inserting or updating new data, that data gets encrypted immediately on the

client, before it ever leaves the client, and remains encrypted in-flight all the way to the database server, where

SQL Server can only store it in that encrypted state – it cannot decrypt it.

Always Encrypted is a hybrid feature, where all the encryption and decryption occurs exclusively on the client

side. Using Luna HSMs with Microsoft SQL Server Always Encrypted provides the following benefits:

 Secure generation, storage and protection of the encryption key on FIPS 140-2 level 3 validated hardware.

 Full life cycle management of the keys.

 HSM audit trail.

 Significant performance improvements by off-loading cryptographic operations from application servers.

Third Party Application Details
This integration uses the following third party applications:

Microsoft SQL Server Always Encrypted

The new feature, called Always Encrypted, is available from SQL Server 2016’s first public preview. Always

Encrypted adds an extra measure of security while the data is being used, when it is most susceptible to attack.

The new security layer addresses that vulnerability by keeping the data encrypted during transactions and

computations, and by only giving decryption keys to the client. If anyone else, including a database or system

administrator, tries to access that client’s database, sensitive data will not appear in plaintext.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
5

In order to use SQL Always Encrypted, the following keys are created:

 Column master key

 Column encryption key

A column encryption key is used to encrypt data in an encrypted column. A column master key is a key-

protecting key that encrypts one or more column encryption keys. The Database Engine stores encryption

configuration for each column in database metadata. However, the Database Engine never stores or uses the

keys of either type in plaintext. It only stores encrypted values of column encryption keys and the information

about the location of column master keys, which are stored in external trusted key stores, such as a Hardware

Security Module (HSM).

For more information about SQL Server Always Encrypted, refer:

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-

engine?view=sql-server-ver15

SQL Server Always Encrypted Setup
This integration uses the following setup to demonstrate the Always Encrypted with Luna HSM.

1. A Windows Server machine, which will become a Domain Controller.

2. A Windows Server machine, which will become SQL Server.

3. A Windows 10 Professional machine which will become the client.

4. A Windows 10 Professional machine which will become another client.

The machines utilized are denoted in the setup are as follows:

DC: Windows Server 2019 Standard Edition as Domain Controller.

DB: Windows Server 2019 Standard Edition as SQL Server 2019 Enterprise Edition.

CL1: Windows 10 Professional machine as Client1 for Provisioning Always Encrypted using Luna HSM.

CL2: Windows 10 Professional machine as Client2 for decrypting the encrypted data if and only if Column

Master Key is accessible.

NOTE: This integration will use the same names as described above at various steps for

demonstration.

Using Multiple Clients Application Servers

Each client server requiring access to the contents of data encrypted with a given CEK must have access to the

CMK created and stored on Luna HSM partition. On each client, ensure that Luna Client is installed and KSP is

registered using the same user who has generated the CMK on Luna HSM partition.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
6

Certified Platforms

This integration is certified on the following platforms:

Luna HSM: Luna HSM appliances are purposefully designed to provide a balance of security, high

performance, and usability that makes them an ideal choice for enterprise, financial, and government

organizations. Luna HSMs physically and logically secure cryptographic keys and accelerate cryptographic

processing. The Luna HSM on premise offerings include the Luna Network HSM, Luna PCIe HSM, and Luna

USB HSMs. Luna HSMs are also available for access as an offering from cloud service providers such as IBM

cloud HSM and AWS cloud HSM classic.

Platforms Tested Luna HSM Microsoft SQL Server

Windows Server 2019 Luna SA v7.7.0

Luna Client v10.4.0

Microsoft SQL Server 2019

NOTE: This integration is tested in both HA and FIPS mode.

Prerequisites
Before you proceed with the integration, complete the following tasks on each client:

Configuring Luna HSM

If you are using Luna HSM:

1. Verify the HSM is set up, initialized, provisioned and ready for deployment.

2. Create a partition that will be later used by SQL Server Always Encrypted Client machine.

3. If using a Luna Network HSM, register a client for the system and assign the client to the partition to create
an NTLS connection. Initialize the Crypto Officer and Crypto User roles for the registered partition.

4. Ensure that the partition is successfully registered and configured. The command to see the registered
partitions is:

C:\Program Files\SafeNet\LunaClient>lunacm.exe

lunacm.exe (64-bit) v10.4.0-417. Copyright (c) 2021 SafeNet. All rights

reserved.

 Available HSMs:

Slot Id -> 0

Label -> SQLAE

Serial Number -> 1312109861428

Model -> LunaSA 7.7.0

Firmware Version -> 7.7.0

Bootloader Version -> 1.1.2

Configuration -> Luna User Partition With SO (PW) Key Export With

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
7

 Cloning Mode

Slot Description -> Net Token Slot

FM HW Status -> Non-FM

5. For PED-authenticated HSM, enable partition policies 22 and 23 to allow activation and auto-activation.

NOTE: Refer to Luna HSM documentation for detailed steps on creating NTLS connection,

initializing the partitions, and assigning various user roles.

Set up Luna HSM High-Availability

Refer to the Luna HSM documentation for HA steps and details regarding configuring and setting up two or

more HSM boxes on host systems. You must enable the HAOnly setting in HA for failover to work so that if the

primary goes down due to any reason all calls automatically route to the secondary until the primary recovers

and starts up.

Set up Luna HSM in FIPS Mode

NOTE: This setting is not required for Universal Client. This setting is applicable only for

Luna Client 7.x.

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux

primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-

compliant HSM. If you are using the Luna HSM in FIPS mode, you have to make the following change in the

configuration file:

[Misc]

RSAKeyGenMechRemap=1

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM is in

FIPS mode.

Integrating Luna HSM with SQL Server Always Encrypted
This section contains detailed instructions to integrate Microsoft SQL Server Always Encrypted with a Luna

HSM. Following are the processes involved in provisioning and configuring the Always Encrypted using Luna

HSM.

 Configure SafeNet KSP

 Create a Sample Database

 Generate Column Master Key

 Generate Column Encryption Key

 Encrypt Columns using Always Encrypted Keys

 View Always Encrypted Data

 Rotate Always Encrypted Key

 Remove Always Encrypted Column Encryption

https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm
https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
8

Configure SafeNet KSP

Register the SafeNet Key Storage Provider (KSP) on the target client machine. In case of multiple client

servers, SafeNet KSP needs to be register on each and every client server requiring access to always

encrypted columns in a database.

To configure the SafeNet KSP on CL1, login as server administrator and perform the following steps:

1. Navigate to the SafeNet KSP directory.

<Luna Client Installation Directory>\KSP

For Example: cd "C:\Program Files\SafeNet\LunaClient\KSP"

2. Run the KSPConfig.exe (KSP configuration wizard) utility to register the SafeNet KSP through a GUI. The
general form of command is:

<Luna Client Installation Directory>\KSP>KspConfig.exe

For Example: C:\Program Files\SafeNet\LunaClient\KSP>KspConfig.exe

3. Double-click Register or View Security Library on the left side of the pane.

4. Browse the library <Luna Client installation Directory>\cryptoki.dll library and click

Register. On successful registration, you will see the following message: "Success registering the
security library".

5. Double-click Register HSM Slots on the left side of the pane.

a. Click the Register for User drop-down menu and select the User.

b. Click the Domain drop-down and select your domain.

c. Click the Available Slots drop-down and select the partition.

d. Enter the partition password in Slot Password field.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
9

e. Click Register Slot to register the slot for Domain\User. On successful registration, a message "The
slot was successfully and securely registered" will appear on screen.

6. Double-click Register HSM Slots on the left side of the pane.

a. Click the Register for User drop-down menu and select SYSTEM.

b. Click the Domain drop-down and select NT AUTHORITY.

c. Open the Available Slots drop-down and select the partition.

d. Enter the partition password in Slot Password field.

e. Click Register Slot to register the slot for NT_AUTHORITY\SYSTEM. On successful registration, a
message "The slot was successfully and securely registered" will appear on screen.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
10

Create a Sample Database

For this demonstration, a sample database is need to be created on DB server. However, an existing database

and table can also be used to encrypt required columns data. To create a sample database and a table for

column encryption, log in to the SQL DB server and perform below steps:

1. Open the SQL Server Management Studio and connect to database server.

2. Create a sample database, such as Clinic.

CREATE DATABASE CLINIC;

3. Create a sample table with few columns to perform column encryption.

USE CLINIC;

CREATE TABLE [dbo].[Patients](

 [PatientId] [int] IDENTITY(1,1),

 [SSN] [char](11) NOT NULL,

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [BirthDate] [date] NOT NULL

 PRIMARY KEY CLUSTERED ([PatientId] ASC) ON [PRIMARY])

 GO

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
11

4. Insert some data in the table.

INSERT INTO dbo.Patients values

('795-73-9838','Steve','Rogers','19890104'),

('001-10-1711','Peter','Parker','19961012'),

('001-10-1711','Tony','Starc','19920508');

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
12

5. View the data is saved and off course it is unencrypted at this stage.

SELECT * FROM dbo.Patients;

6. Disconnect the database and log off from the DB Server.

Generate Column Master Key

Column master keys are key-protecting keys used to encrypt column encryption keys. Column master keys

must be stored in a trusted key store, such as Windows Certificate Store, Azure Key Vault, or a hardware

security module. The database only contains metadata about column master keys (the type of key store and

location). To ensure Always Encrypted is effective, never generate column master keys or column encryption

keys on a computer hosting your database. Instead, generate the keys on a separate computer, which is either

dedicated for key management, or is a machine hosting applications that will need access to the keys anyway.

For this demonstration, a client machine will be used to generate the column master key and column encryption

key. To generate the column master key, perform the following steps on a client machine separate from DB

server:

1. Log on to the CL1 as an administrator where Luna Client is installed and SafeNet KSP is already registered
with the HSM partition.

2. Open the Window PowerShell app and click Run as administrator.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
13

3. Before proceeding to generate the keys, install the SqlServer powershell module.

Install-Module -Name SqlServer -AllowClobber

4. Ensure that the SqlServer module is installed successfully. You will see output similar to the following
sample:

Get-Module SqlServer -ListAvailable

5. Create a column master key on HSM partition using the script provided below. Copy and paste the contents
provided here in a file and save the file as .ps1 extension (for example, CreateCMK.ps1).

Create a column master key in a Hardware key store that has a CNG provider, a.k.a key store
provider (KSP).

$cngProviderName = "SafeNet Key Storage Provider"

$cngAlgorithmName = "RSA"

$cngKeySize = 2048 # Recommended key size for Always Encrypted column master keys

$cngKeyName = "AlwaysEncryptedKey" # Name identifying your new key in the KSP

$cngProvider = New-Object

System.Security.Cryptography.CngProvider($cngProviderName)

$cngKeyParams = New-Object

System.Security.Cryptography.CngKeyCreationParameters

$cngKeyParams.provider = $cngProvider

$cngKeyParams.KeyCreationOptions =

[System.Security.Cryptography.CngKeyCreationOptions]::OverwriteExisti

ngKey

$keySizeProperty = New-Object

System.Security.Cryptography.CngProperty("Length",

[System.BitConverter]::GetBytes($cngKeySize),

[System.Security.Cryptography.CngPropertyOptions]::None);

$cngKeyParams.Parameters.Add($keySizeProperty)

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
14

$cngAlgorithm = New-Object

System.Security.Cryptography.CngAlgorithm($cngAlgorithmName)

$cngKey =

[System.Security.Cryptography.CngKey]::Create($cngAlgorithm,

$cngKeyName, $cngKeyParams)

6. Run the script to generate the CMK on HSM partition.

.\CreateCMK.ps1

7. Run the LunaCM utility provided with the Luna Client and check the CMK has been generated on HSM
Partition.

& 'C:\Program Files\SafeNet\LunaClient\lunacm.exe'

role login -n co

par con

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
15

8. Execute the following command to import the SqlServer module in PowerShell.

Import-Module "SqlServer"

9. Now connect to the database and create column master key metadata in the database. Copy and paste the
contents provided here in a file and save the with file .ps1 extension. For example: CMKMetadata.ps1.

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Create a SqlColumnMasterKeySettings object for your column master key.

$cngProviderName = "SafeNet Key Storage Provider"

$cngKeyName = "AlwaysEncryptedKey" # Your CMK key label on HSM Partition.

$cmkSettings = New-SqlCngColumnMasterKeySettings -CngProviderName

$cngProviderName -KeyName $cngKeyName

Create column master key metadata in the database.

$cmkName = "CMK1"

New-SqlColumnMasterKey -Name $cmkName -InputObject $database -

ColumnMasterKeySettings $cmkSettings

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
16

10. Run the script to generate the CMK Metadata in sample database created.

.\CMKMetadata.ps1

11. Connect to the DB server and run the following command to see the CMK metadata created in the
database.

SELECT * FROM sys.column_master_keys;

Generate Column Encryption Key

Column encryption keys are content-encryption keys used to encrypt data. As the name implies, you use

column encryption keys to encrypt data in database columns. You can encrypt 1 or more columns with the

same column encryption key, or you can use multiple column encryption keys depending on your application

requirements. The column encryption keys are themselves encrypted, and only the encrypted values of the

column encryption keys are stored in the database (as part of the column encryption key metadata).

1. Log on to the CL1 as an administrator where CMK is generated.

2. Open the Window PowerShell app and click Run as administrator.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
17

3. Now connect to the database and create column encryption key encrypted by column master key and store
the encrypted CEK metadata in the database. Copy and paste the contents provided here in a file and save
the file with .ps1 extension. For example: CEKMetadata.ps1

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Generate a column encryption key, encrypt it with the column master key and create column
encryption key metadata in the database.

$cmkName = "CMK1"

$cekName = "CEK1"

New-SqlColumnEncryptionKey -Name $cekName -InputObject $database -

ColumnMasterKey $cmkName

4. Run the script to generate the CEK Metadata in sample database created.

.\CEKMetadata.ps1

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
18

5. Connect to the DB server and run the following command to see the CMK metadata created in the
database.

SELECT * FROM sys.column_encryption_keys;

Encrypt Columns using Always Encrypted Keys

The following example demonstrates setting the target encryption configuration for a couple of columns using

the offline approach. If either column isn't already encrypted, it will be encrypted. If any column is already

encrypted using a different key and/or a different encryption type, it will be decrypted and then re-encrypted with

the specified target key/type.

SQL Server supports Encryption Type values are one of the following:

 Deterministic: Same encrypted values for similar data.

 Randomized: Different encrypted value for same data.

 Plaintext (only available to revert encrypted columns to an unencrypted state).

1. Log on to the CL1 as an administrator.

2. Copy and paste the following contents in the file and save the file with .ps1 extension (for example,
encrypt.ps1).

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
19

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Encrypt the selected columns (or re-encrypt, if they are already encrypted using keys/encrypt types,
different than the specified keys/types.

$ces = @()

$ces += New-SqlColumnEncryptionSettings -ColumnName "dbo.Patients.SSN" -

EncryptionType "Deterministic" -EncryptionKey "CEK1"

$ces += New-SqlColumnEncryptionSettings -ColumnName

"dbo.Patients.BirthDate" -EncryptionType "Randomized" -EncryptionKey

"CEK1"

Set-SqlColumnEncryption -InputObject $database -ColumnEncryptionSettings

$ces -LogFileDirectory .

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
20

3. Run the script in PowerShell to encrypt the column in the sample table.

.\encrypt.ps1

4. Connect to the DB server and run the following command to verify the columns which must be encrypted
now.

SELECT * FROM dbo.Patients;

View Always Encrypted Data

Data encrypted using Always Encrypted keys can be decrypted only at the client site by the client, who has

access to the Column Master Key created and stored on HSM partition. Database Administrator and other

users cannot see the encrypted data if they don’t have access to CMK created on Luna HSM.

To view the Always Encrypted data, perform the below steps at the Client server who have access to the CMK

generated on HSM partition.

1. Log on to the CL1 as an administrator.

2. Copy and paste the following contents in the file and save the file with .ps1 extension (for example,
viewdata.ps1):

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
21

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$connStr = $connStr + "; Column Encryption Setting = Enabled"

Invoke the query to view the encrypted data

Invoke-Sqlcmd -Query "SELECT * FROM dbo.Patients" -ConnectionString

$connStr | format-table -AutoSize

3. Run the script in PowerShell to encrypt the column in the sample table.

.\viewdata.ps1

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
22

Viewing Always Encrypted Data on Multiple Clients

To view always encrypted data on multiple clients, each client must have access to HSM partition where CMK is

being generated and SafeNet KSP must be registered on the client, if not, follow the instructions mentioned in

Configure SafeNet KSP

1. Log on to the CL2 as an administrator where Luna Client is installed and SafeNet KSP is registered with the
HSM partition.

2. Open the Command Prompt and run the ksputil to see if the CMK, created on HSM partition by another
client system (CL1), is accessible.

C:\Program Files\SafeNet\LunaClient\KSP>ksputil.exe listKeys /s 0 /user

Where /s <num> specifies the Slot ID of partition and /user specifies current logged in user. When the
command get executed, you will be prompted to provide a Crypto Officer Password.

If the CMK generated from another client is accessible, Always Encrypted data can be decrypted at this
client.

3. Open the Windows PowerShell app and click Run as administrator.

4. Before requesting the encrypted data from database server, install the SqlServer powershell module.

Install-Module -Name SqlServer -AllowClobber

5. Ensure that the SqlServer module is installed successfully. You will see output similar to the example below.

Get-Module SqlServer -ListAvailable

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
23

6. Copy and paste the following contents in the file and save the file with .ps1 extension. For Example:
viewdata.ps1

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$connStr = $connStr + "; Column Encryption Setting = Enabled"

Invoke the query to view the encrypted data.

Invoke-Sqlcmd -Query "SELECT * FROM dbo.Patients" -ConnectionString

$connStr | format-table -AutoSize

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
24

7. Run the script in PowerShell to encrypt the column in the sample table.

.\viewdata.ps1

The encrypted data is only accessible by the clients having access to CMK. CMK is accessible only if:

 Client is registered with the same Luna Partition.

 SafeNet KSP is registered using the same user on all clients.

The encrypted data can be viewed only by clients who have access to the Luna HSM partition and have

registered SafeNet KSP with the users having access to the CMK. Any other users, including DBA, cannot view

the encrypted data without access to the CMK even after using parametrized query and Column Encryption

Setting=Enabled.

The SQL Server Always Encrypted integration using Luna HSM is completed and Column Master Key, used to

encrypt Column Encryption Key, is securely stored on Luna HSM. In the next section, we will see how to rotate

the always encrypted keys and decrypt the encrypted data to plaintext when column encryption is not required.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
25

Rotate Always Encrypted Key

Rotating Always Encrypted Keys is the process of replacing an existing key with a new one. The key needs to

be rotated if it has been compromised, or in order to comply with your organization's policies or compliance

regulations that mandate cryptographic keys must be rotated on a regular basis.

Always Encrypted uses two types of keys, so there are two high-level key rotation workflows; rotating column

master keys, and rotating column encryption keys.

Column encryption key rotation - involves decrypting data that is encrypted with the current key, and re-

encrypting the data using the new column encryption key. Rotating a column encryption key requires access to

both the keys and the database.

Column master key rotation - involves decrypting column encryption keys that are protected with the current

column master key, re-encrypting them using the new column master key, and updating the metadata for both

types of keys.

Rotating a Column Master Key (CMK)

The following script demonstrates replacing an existing column master key (CMK1) created initially using

Generate Column Master Key with a new column master key (CMK2). To rotate the Column Master Key:

1. Log on to any Client (CL1 or CL2) as a server administrator, copy and paste the following contents in a file,
and then save the file with .ps1 extension (for example, rotateCMK.ps1).

NOTE: Replace the <server name> and <database name> with actual server name and
database in your environment. In addition, provide cngKeyName as per your choice to
recognize the new key in the KSP. The key will be generated on HSM partition with same key
label specified here.

NOTE: It is recommended that you should not permanently delete the old column master

key after the key rotation. Instead, the old column master key must be kept in the Luna HSM
partition or any secured location such as Luna Backup HSM. If you restore your database
from a backup file to a point in time before the new column master key was configured, you

must need the old column master key to access the data restored.

Create a new column master key in a Hardware key store that has a CNG provider, a.k.a key store
provider (KSP).

$cngProviderName = "SafeNet Key Storage Provider"

$cngAlgorithmName = "RSA"

$cngKeySize = 2048

$cngKeyName = "AlwaysEncryptedKey10012022" # Name identifying your new key in the
KSP.

$cngProvider = New-Object

System.Security.Cryptography.CngProvider($cngProviderName)

$cngKeyParams = New-Object

System.Security.Cryptography.CngKeyCreationParameters

$cngKeyParams.provider = $cngProvider

$cngKeyParams.KeyCreationOptions =

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
26

[System.Security.Cryptography.CngKeyCreationOptions]::OverwriteExistingKey

$keySizeProperty = New-Object

System.Security.Cryptography.CngProperty("Length",

[System.BitConverter]::GetBytes($cngKeySize),

[System.Security.Cryptography.CngPropertyOptions]::None);

$cngKeyParams.Parameters.Add($keySizeProperty)

$cngAlgorithm = New-Object

System.Security.Cryptography.CngAlgorithm($cngAlgorithmName)

$cngKey = [System.Security.Cryptography.CngKey]::Create($cngAlgorithm,

$cngKeyName, $cngKeyParams)

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Create a SqlColumnMasterKeySettings object for your new column master key.

$newCmkSettings = New-SqlCngColumnMasterKeySettings -CngProviderName

$cngProviderName -KeyName $cngKeyName

Create a new column master key metadata in the database.

$newCmkName = "CMK2"

New-SqlColumnMasterKey -Name $newCmkName -InputObject $database -

ColumnMasterKeySettings $newCmkSettings

Initiate the rotation from the current column master key to the new column master key.

$oldCmkName = "CMK1"

Invoke-SqlColumnMasterKeyRotation -SourceColumnMasterKeyName $oldCmkName -

TargetColumnMasterKeyName $newCmkName -InputObject $database

Complete the rotation of the old column master key.

Complete-SqlColumnMasterKeyRotation -SourceColumnMasterKeyName $oldCmkName

-InputObject $database

Remove the old column master key metadata.

Remove-SqlColumnMasterKey -Name $oldCmkName -InputObject $database

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
27

2. Run the script in PowerShell to rotate the Column Master Key.

.\rotateCMK.ps1

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
28

3. Confirm the newly generated column master key on HSM partition using LunaCM.

& 'C:\Program Files\SafeNet\LunaClient\lunacm.exe'

role login -n co

par con

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
29

4. Connect to the DB server and confirm the new CMK metadata created in the database.

SELECT * FROM sys.column_master_keys;

The rotation of column master key is completed successfully and you can view the encrypted columns with new

column master key using View Always Encrypted Data.

Rotating a Column Encryption Key (CEK)

Rotating a column encryption key can take a long time if there are large tables containing columns encrypted

with the key being rotated. Therefore, the organization needs to plan a column encryption key rotation carefully

because during the rotation applications can't write to the impacted tables.

The below script demonstrates rotating a column encryption key. The script assumes, the target database

contains some columns encrypted with a column encryption key, named CEK1 (to be rotated which was initially

created in using Generate Column Encryption Key), which is protected using a column master key, named

CMK2 (rotated CMK which in now used to encrypt the CEK1 after Rotating a Column Master Key). To rotate the

Column Encryption Key:

1. Log on to any Client (CL1 or CL2) as a server administrator, copy and paste the following contents in a file,
and save the file with .ps1 extension (for example, rotateCEK.ps1).

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
30

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Generate a new column encryption key, encrypt it with the column master key and create column
encryption key metadata in the database.

$cmkName = "CMK2"

$newCekName = "CEK2"

New-SqlColumnEncryptionKey -Name $newCekName -InputObject $database -

ColumnMasterKey $cmkName

Find all columns encrypted with the old column encryption key, and create a
SqlColumnEncryptionSetting object for each column.

$ces = @()

$oldCekName = "CEK1"

$tables = $database.Tables

for($i=0; $i -lt $tables.Count; $i++){

 $columns = $tables[$i].Columns

 for($j=0; $j -lt $columns.Count; $j++) {

 if($columns[$j].isEncrypted -and

$columns[$j].ColumnEncryptionKeyName -eq $oldCekName) {

 $threeColPartName = $tables[$i].Schema + "." +

$tables[$i].Name + "." + $columns[$j].Name

 $ces += New-SqlColumnEncryptionSettings -ColumnName

$threeColPartName -EncryptionType $columns[$j].EncryptionType -

EncryptionKey $newCekName

 }

 }

}

Re-encrypt all columns, currently encrypted with the old column encryption key, using the new
column encryption key.

Set-SqlColumnEncryption -ColumnEncryptionSettings $ces -InputObject

$database -UseOnlineApproach -MaxDowntimeInSeconds 120 -LogFileDirectory

.

Remove the old column encryption key metadata.

Remove-SqlColumnEncryptionKey -Name $oldCekName -InputObject $database

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
31

2. Run the script in PowerShell to rotate the Column Encryption Key.

.\rotateCEK.ps1

When the script gets completed successfully, it will create the new column encryption key, decrypt all encrypted

columns with existing CEK and re-encrypt all columns using new CEK, store the new encrypted CEK in

metadata of the database and remove the old CEK from the metadata.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
32

3. Connect to the DB server and confirm the new CEK metadata created in the database.

SELECT * FROM sys.column_encryption_keys;

The rotation of column encryption key is completed successfully and you can view the encrypted columns

(encrypted using new CEK) using View Always Encrypted Data.

Remove Always Encrypted Column Encryption

If always encrypted columns need to be decrypted, we can remove column encryption from previously

encrypted column data.

Example 1: Decrypting a Column

The following example shows how to decrypt a particular column in a table that is currently encrypted in a

database. The image below shows the Patients table that has both SSN and BirthDate columns encrypted.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
33

To decrypt only the SSN column:

1. Log on to any Client that has access to the CMK and run the script provided below using PowerShell.

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " +

$databaseName + "; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Decrypt the SSN column from Patients table.

$ces = @()

$ces += New-SqlColumnEncryptionSettings -ColumnName

"dbo.Patients.SSN" -EncryptionType "Plaintext"

Set-SqlColumnEncryption -InputObject $database -

ColumnEncryptionSettings $ces -LogFileDirectory .

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
34

2. Check again after running the script. The SSN column will be decrypted.

Example 2: Decrypting All Columns

The next example shows how to decrypt all columns that are currently encrypted in a database. The script

provided here will decrypt all columns (each and every table) in a database. The image below shows the

Patients table that has both SSN and BirthDate columns encrypted.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
35

To decrypt all the columns in a database:

1. Log on to any client who have access to the CMK and run the script provided below using PowerShell.

NOTE: Replace the <server name> and <database name> with actual server name and

database in your environment.

Import the SqlServer module.

Import-Module "SqlServer"

Connect to your database.

$serverName = "<server name>"

$databaseName = "<database name>"

Change the authentication method in the connection string, if needed.

$connStr = "Server = " + $serverName + "; Database = " + $databaseName +

"; Integrated Security = True"

$database = Get-SqlDatabase -ConnectionString $connStr

Find all encrypted columns, and create a SqlColumnEncryptionSetting object for each column.

$ces = @()

$tables = $database.Tables

for($i=0; $i -lt $tables.Count; $i++){

 $columns = $tables[$i].Columns

 for($j=0; $j -lt $columns.Count; $j++) {

 if($columns[$j].isEncrypted) {

 $threeColPartName = $tables[$i].Schema + "." +

$tables[$i].Name + "." + $columns[$j].Name

 $ces += New-SqlColumnEncryptionSettings -ColumnName

$threeColPartName -EncryptionType "Plaintext"

 }

 }

}

Decrypt all columns.

Set-SqlColumnEncryption -ColumnEncryptionSettings $ces -InputObject

$database -LogFileDirectory .

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
36

2. Check again after running the script. All columns in the database will be decrypted.

The Always Encrypted data will revert to plaintext. If your database is protected by TDE, then the data is still

being encrypted whilst at rest. Viewing the database table now will show all columns in plaintext (i.e. an

unencrypted state).

NOTE: When removing Always Encryption from the database columns, ensure that all
columns are appearing in plaintext. If Always Encrypted Keys are not required first delete

Column Encryption Keys before dropping the Column Master Key.

This completes the integration of SQL Server Always Encrypted using Luna HSM, also covering the rotation

and removing of always encrypted keys when not-in-use. When implemented, Always Encrypted, column

encryption key is encrypted using column master key and the column master key will remain secured in a Luna

HSM and only client, who has access to the CMK stored in the Luna HSM, will be able to view the encrypted

data.

Microsoft SQL Server Always Encrypted: Integration Guide

Copyright © 2022 Thales Group
37

Contacting Customer Support
If you encounter a problem during this integration, contact your supplier or Thales Customer Support.

Thales Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is

governed by the support plan arrangements made between Thales and your organization. Please consult

this support plan for further information about your entitlements, including the hours when telephone

support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more.

You can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a

new account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed

on the support portal.

Email Support

You can also contact technical support by email at technical.support.DIS@thalesgroup.com.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/
mailto:technical.support.DIS@thalesgroup.com

