

Docker Container: Integration Guide
THALES LUNA HSM AND LUNA CLOUD HSM

Copyright © 2022 Thales Group
2

Document Information

Document Part Number 007-000131-001

Revision C

Release Date 7 November 2022

Trademarks, Copyrights, and Third-Party Software

Copyright © 2022 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
3

CONTENTS

Overview .. 4
Certified Platforms .. 4
Prerequisites .. 5

Set up Luna HSM .. 5
Set up Luna Cloud HSM Service ... 6

Integrating Luna Cloud HSM service client with Docker Container .. 10
Create Luna Docker image .. 10
Configure Luna Cloud HSM service inside Docker Container ... 10

Integrating Docker Container for Luna Network HSM .. 12
Configure Luna Minimal Client for Docker Container .. 12
Create NTLS connection to Luna Network HSM .. 13
Create Luna Client Docker image .. 15
Run Docker Container ... 15

Integrating Docker Swarm with Luna Cloud HSM .. 16
Create Luna Docker Image in Docker Registry .. 16
Set up Docker Swarm Cluster.. 18
Deploy application on Swarm Manager .. 19

Integrating Kubernetes with Luna Network HSM ... 22
Provision Luna Network HSM .. 22
Configure and install Luna Minimal Client in Kubernetes .. 23

Integrating OpenShift Origin with Luna Cloud HSM ... 28
Provision Luna Cloud HSM service .. 28
Deploy OpenShift Origin pod ... 28

Integrating Apache Mesos with Luna Cloud HSM.. 38
Provision Luna Cloud HSM service for Apache Mesos ... 38
Configure Luna Cloud HSM in Apache Mesos ... 38
Create Luna Docker image .. 39
Create a sample application in Marathon ... 39
Start interactive session with Docker Container ... 41

APPENDIX A: Using Luna HSM inside Docker Container ... 43
Configure Java Keytool Utility to use Luna Cloud HSM service inside a Docker Container 43
Generate a key pair and sign a JAR file inside a Docker Container .. 43

APPENDIX B: Using Luna Client from Host to Docker Container .. 47
APPENDIX C: Using Luna Client from Host to Kubernetes Pods... 49
Contacting Customer Support ... 52

Customer Support Portal ... 52
Telephone Support .. 52

Docker Container: Integration Guide

Copyright © 2022 Thales Group
4

Overview
Docker makes it easier to create, deploy, and run applications by using containers. Containers allow a

developer to package an application with all the parts that it needs and then ship the application and its

components as a single package.

This guide demonstrates how to integrate Luna HSM or Luna Cloud HSM with an application that has been

containerized using Docker. This guide includes configurations for the container orchestrators Docker Swarm,

Kubernetes, Openshift, and Apache Mesos. This guide provides a Java Code Signer use case as an example.

Note: Java Code Signing is not the only use case. Various other applications can be
deployed inside Docker Container and benefit from the integration with a Luna HSM or Luna

Cloud HSM service.

The benefits of integrating an HSM with Docker Container include:

 Secure generation, storage, and protection of the signing private keys on FIPS 140-2 level 3 validated

hardware.

 Full life cycle management of the keys.

 HSM audit trail.*

 Take advantage of cloud services with confidence.

 Significant performance improvements by off-loading cryptographic operations from application servers

*Luna Cloud HSM service does not have access to the secure audit trail

Certified Platforms
This integration is certified on the following platforms:

Certified platforms on Luna HSM

Certified platforms on Luna Cloud HSM

Certified platforms on Luna HSM

HSM Type Platforms Tested

Luna HSM RHEL 7

RHEL 8

Luna HSM: Luna HSM appliances are purposefully designed to provide a balance of security, high

performance, and usability that makes them an ideal choice for enterprise, financial, and government

organizations. Luna HSMs physically and logically secure cryptographic keys and accelerate cryptographic

processing. The Luna HSM on premise offerings include the Luna Network HSM, Luna PCIe HSM, and Luna

USB HSMs. Luna HSMs are also available for access as an offering from cloud service providers such as IBM

cloud HSM and AWS cloud HSM classic.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
5

Certified platforms on Luna Cloud HSM

HSM Type Platforms Tested

Luna Cloud HSM RHEL 7

Luna Cloud HSM: Luna Cloud HSM platform provides a wide range of cloud-based HSM and Key

Management services through a simple graphical user interface. With Luna Cloud HSM, security is simple, cost

effective and easy to manage because there is no hardware to buy, deploy and maintain. As an Application

Owner, you click and deploy services, generate usage reports and maintain just the services you need.

Prerequisites
Complete the following prerequisites before proceeding with this integration:

Set up Luna HSM

Set up Luna Cloud HSM Service

Set up Luna HSM

If you are using Luna HSM:

1. Verify the HSM is set up, initialized, provisioned, and ready for deployment. Refer to the Luna HSM Product
Documentation for more information.

2. Create a partition that will be used by Docker Container.

3. If using a Luna Network HSM, register a client for the system and assign the client to the partition to create
an NTLS connection. Initialize the Crypto Officer and Crypto User roles for the registered partition.

4. Ensure that the partition is successfully registered and configured. The command to see the registered
partitions is:

C:\Program Files\SafeNet\LunaClient>lunacm.exe

lunacm.exe (64-bit) v10.3.0-273. Copyright (c) 2020 SafeNet. All rights

reserved.

Available HSMs:

Slot Id -> 0

 Label -> INTG_Par01

 Serial Number -> 1238696044952

 Model -> LunaSA 7.4.0

 Firmware Version -> 7.4.0

Configuration -> Luna User Partition With SO (PW) Key Export With

Cloning Mode

 Slot Description -> Net Token Slot

FM HW Status -> Non-FM

Docker Container: Integration Guide

Copyright © 2022 Thales Group
6

5. For PED-authenticated HSM, enable partition policies 22 and 23 to allow activation and auto-activation.

NOTE: Refer to the Luna HSM documentation for detailed steps on creating NTLS

connection, initializing the partitions, and assigning various user roles.

Set up Luna HSM High-Availability

Refer to Luna HSM documentation to gain an understanding of the steps involved in setting up Luna HSM High

Availability and configuring and setting up two or more HSM boxes on host systems. You must enable the

HAOnly setting in HA for the failover to work so that if the primary goes down due to any reason, all the calls are

automatically routed to the secondary until the primary recovers and starts up.

Set up Luna HSM in FIPS Mode

NOTE: This setting is not required for Universal Client. This setting is applicable only for

Luna Client 7.x.

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux

primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-

compliant HSM. If you are using the Luna HSM in FIPS mode, you have to make the following change in the

configuration file:

[Misc]

RSAKeyGenMechRemap=1

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM is in

FIPS mode.

Set up Luna Cloud HSM Service

You can set up Luna Cloud HSM Service in the following ways:

 Set up standalone Cloud HSM service using minimum client package

 Set up standalone Cloud HSM service using full Luna client package

 Set up Luna HSM and Luna Cloud HSM service in hybrid mode

 Set up Luna Cloud HSM Service in FIPS mode

NOTE: Luna Client v10.x or higher is required for configuring Luna HSM device and Luna

Cloud HSM service in hybrid mode.

Set up standalone Cloud HSM service using minimum client package

To set up standalone Luna Cloud HSM service using minimum client package:

1. Transfer the downloaded .zip file to your Client workstation using pscp, scp, or other secure means.

2. Extract the .zip file into a directory on your client workstation.

https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm
https://thalesdocs.com/gphsm/Content/luna/network/luna_network_releases.htm
https://thalesdocs.com/gphsm/luna/10.2/docs/network/Content/Utilities/pscp.htm

Docker Container: Integration Guide

Copyright © 2022 Thales Group
7

3. Extract or untar the appropriate client package for your operating system. Do not extract to a new
subdirectory; place the files in the client install directory.

[Windows]

cvclient-min.zip

[Linux]

cvclient-min.tar

tar -xvf cvclient-min.tar

4. Run the setenv script to create a new configuration file containing information required by the Luna Cloud
HSM service.

[Windows]

Right-click setenv.cmd and select Run as Administrator.

[Linux]

Source the setenv script.

source ./setenv

Run the LunaCM utility and verify the Cloud HSM service is listed.

Set up standalone Cloud HSM service using full Luna client package

To set up standalone Luna Cloud HSM service using full Luna client package:

1. Transfer the downloaded .zip file to your Client workstation using pscp, scp, or other secure means.

2. Extract the .zip file into a directory on your client workstation.

3. Extract or untar the appropriate client package for your operating system. Do not extract to a new
subdirectory; place the files in the client install directory.

[Windows]

cvclient-min.zip

[Linux]

cvclient-min.tar

tar -xvf cvclient-min.tar

4. Run the setenv script to create a new configuration file containing information required by the Luna Cloud
HSM service.

[Windows]

Right-click setenv.cmd and select Run as Administrator.

[Linux]

Source the setenv script.

source ./setenv

Docker Container: Integration Guide

Copyright © 2022 Thales Group
8

5. Copy the server and partition certificates from the Cloud HSM service client directory to Luna client
certificates directory:

Cloud HSM Certificates:

server-certificate.pem

partition-ca-certificate.pem

partition-certificate.pem

LunaClient Certificate Directory:

[Windows default location for Luna Client]

C:\Program Files\Safenet\Lunaclient\cert\

[Linux default location for Luna Client]

/usr/safenet/lunaclient/cert/

NOTE: Skip this step for Luna Client v10.2 or higher.

6. Open the configuration file from the Cloud HSM service client directory and copy the XTC and REST
section.

[Windows]

crystoki.ini

[Linux]

Chrystoki.conf

7. Edit the Luna Client configuration file and add the XTC and REST sections copied from Cloud HSM service
client configuration file.

8. Change server and partition certificates path from step 5 in XTC and REST sections. Do not change any

other entries provided in these sections.

[XTC]

. . .

PartitionCAPath=<LunaClient_cert_directory>\partition-ca-certificate.pem

PartitionCertPath00=<LunaClient_cert_directory>\partition-certificate.pem

. . .

[REST]

. . .

SSLClientSideVerifyFile=<LunaClient_cert_directory>\server-certificate.pem

. . .

NOTE: Skip this step for Luna Client v10.2 or higher.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
9

9. Edit the following entry from the Misc section and update the correct path for the plugins directory:

Misc]

PluginModuleDir=<LunaClient_plugins_directory>

[Windows Default]

C:\Program Files\Safenet\Lunaclient\plugins\

[Linux Default]

/usr/safenet/lunaclient/plugins/

10. Save the configuration file. If you wish, you can now safely delete the extracted Cloud HSM service client

directory.

11. Reset the ChrystokiConfigurationPath environment variable and point back to the location of the Luna
Client configuration file.

Windows

In the Control Panel, search for "environment" and select Edit the system environment variables.

Click Environment Variables. In both list boxes for the current user and system variables,

edit ChrystokiConfigurationPath and point to the crystoki.ini file in the Luna client install directory.

Linux

Either open a new shell session, or export the environment variable for the current session pointing to the

location of the Chrystoki.conf file:

export ChrystokiConfigurationPath=/etc/

12. Run the LunaCM utility and verify that the Cloud HSM service is listed. In hybrid mode, both Luna and
Cloud HSM service will be listed.

NOTE: Follow the Luna Cloud HSM documentation for detailed steps for creating service,

client, and initializing various user roles.

Set up Luna HSM and Luna Cloud HSM service in hybrid mode

To set up Luna HSM and Luna Cloud HSM service in hybrid mode, follow the steps mentioned under the Set up

standalone Cloud HSM service using full Luna client package section above.

NOTE: Luna Client v10.x or higher is required for configuring Luna HSM device and Luna

Cloud HSM service in hybrid mode.

Set up Luna Cloud HSM Service in FIPS mode

Luna Cloud HSM service operates in both FIPS and non-FIPS mode. If your organization requires non-FIPS

algorithms for your operations, ensure you enable the Allow non-FIPS approved algorithms check box when

configuring your Cloud HSM service. The FIPS mode is enabled by default. Refer to the Mechanism List in the

SDK Reference Guide for more information about available FIPS and non-FIPS algorithms.

https://thalesdocs.com/dpod/index.html

Docker Container: Integration Guide

Copyright © 2022 Thales Group
10

Integrating Luna Cloud HSM service client with Docker Container
Create and run the Luna Docker image to use the Luna Cloud HSM service inside the Docker Container.

Create Luna Docker image

To create Luna Docker image:

1. Create file Dockerfile in the current working directory and add the following entries:

FROM centos:centos7

RUN mkdir -p /usr/local/luna

COPY ForDocker_client.zip /usr/local/luna

ENTRYPOINT /bin/bash

#End of the Dockerfile

2. Build a Docker Image.

docker build . -t dpod-in-docker

3. Verify the Docker image is created.

docker images

4. Start the docker container with the following command.

docker run –it dpod-in-docker –name dpod-in-docker

Now you are inside the Docker Container.

Configure Luna Cloud HSM service inside Docker Container

To configure Luna Cloud HSM service inside Docker Container:

1. Change the directory to /usr/local/luna.

2. Unzip the client package.

unzip ForDocker_client.zip

The above Client zip package contains:

 Chrystoki.conf

 crystoki-template.ini

 cvclient-min.tar

 cvclient-min.zip

 EULA.zip

 partition-ca-certificate.pem

 partition-certificate.pem

 server-certificate.pem

Docker Container: Integration Guide

Copyright © 2022 Thales Group
11

3. Untar the cvclient-min.tar.

tar xfv cvclient-min.tar

4. Set the environment variable.

source ./setenv

5. Start LunaCM to verify the NTLS connection.

./bin/64/lunacm

6. Set the active slot to the uninitialized application partition:

lunacm:> slot set -slot <slotnum>

7. Initialize the application partition, to create the partition's Security Officer (SO), and set the initial password
and cloning domain.

lunacm:> partition init -label <par_label>

8. Log in as Partition SO. You can also use the shortcut po.

lunacm:> role login -name Partition SO

9. Initialize the Crypto Officer role and set the initial password. You can also use the shortcut co.

lunacm:> role init -name Crypto Officer

10. The Partition SO can create the Crypto Officer, but only the Crypto Officer can create the Crypto User. You
must log out to allow the Crypto Officer to log in with the newly-set password.

lunacm:> role logout

Note: Once the Crypto Officer logs in and changes the initial credential set by the Partition
SO, applications using the CO's challenge secret/password can perform cryptographic

operations in the partition. The Crypto Officer can create, modify and delete crypto objects
within the partition, and use existing crypto objects (sign/verify). You can also create a
limited-capability role called Crypto User that can use the objects created by the Crypto
Officer, but cannot modify them. The separation of roles is important in some security

regimes and operational situations, and where you might be required to satisfy audit criteria

for industry or government oversight.

11. Log in as the Crypto Officer.

lunacm:> role login -name Crypto Officer

Note: The password for the Crypto Officer role is valid for the initial login only. You must

change the initial password using the command role changepw during the initial login
session, or a subsequent login. Failing to change the password will result in a

CKR_PIN_EXPIRED error when you perform role-dependent actions.

12. If you have not already done so, change the initial password set by the Partition SO.

lunacm:> role changepw -name Crypto Officer

13. Create the Crypto User. You can also use the shortcut cu.

lunacm:> role init -name Crypto User

The Crypto User can now log in with the credentials provided by the Crypto Officer, and change the initial
password. The Crypto User can now use applications to perform cryptographic operations using keys and
objects created in the partition by the Crypto Officer.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
12

Refer to Using Luna Cloud HSM service client inside Docker Container for an application demonstration inside

a Docker using Luna Cloud HSM.

Integrating Docker Container for Luna Network HSM
Luna Network HSMs provide strong physical protection of secure assets, including keys, and should be

considered a best practice when working with Docker containers. Using the Luna HSM with Docker container

requires the Luna minimal client. The minimal client installation contains the run-time libraries required for a

cryptographic application to connect to the Luna Network HSM using PKCS#11 or Java APIs.

NOTE: Please refer the APPENDIX B: Using Luna Client from Host to Docker Container if
you want to use Luna Client configured on the host system via Docker volumes without

installing any client inside the container.

Install the Luna minimal client inside of a Docker container and configure the Docker container to communicate

with the Luna Network HSM. Complete the following to configure your Docker container to use a Luna Network

HSM:

 Configure Luna Minimal Client for Docker Container

 Create NTLS connection to Luna Network HSM

 Create Luna Client Docker image

 Run Docker Container

Configure Luna Minimal Client for Docker Container

Install the Luna minimal client. The minimal client contains the run-time libraries required for a cryptographic

application to connect to the Luna Network HSM using PKCS#11 or Java APIs. To install the Luna minimal

client in Docker container:

1. Install the full Luna HSM Client software (non-minimal) on the Docker host.

2. Create a directory. In this example:

$HOME/luna-docker

3. Create the following subdirectories under the first directory:

$HOME/luna-docker/config

$HOME/luna-docker/config/certs

Additionally, if you are configuring STC:

$HOME/luna-docker/config/stc

$HOME/luna-docker/config/stc/token/001

Create the empty file:

$HOME/luna-docker/config/stc/token/001/token.db

NOTE: The contents of the config directory are needed by the Docker Container.

4. Copy the Luna Minimal Client tarball to $HOME/luna-docker.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
13

5. Untar the Luna Minimal Client tarball.

tar -xf $HOME/luna-docker/LunaClient-Minimal-<release_version>.x86_64.tar -C

$HOME/luna-docker

6. Copy the Chrystoki.conf file from the Minimal Client directory to $HOME/luna-docker/config.

cp LunaClient-Minimal-<release_version>.x86_64/Chrystoki-template.conf

$HOME/luna- docker/config/Chrystoki.conf

7. Define the following environment variable:

export ChrystokiConfigurationPath=$HOME/luna-docker/config

Create NTLS connection to Luna Network HSM

Open an NTLS connection between the Docker container and the Luna Network HSM. This allows the HSM

device to communicate securely with the Docker application. To create NTLS connection to Luna Network HSM:

1. Create a Luna HSM Client certificate for the Docker container.

/usr/safenet/lunaclient/bin/vtl createCert -n <cert_name>

2. Copy the client certificate to the SafeNet Luna Network HSM appliance.

scp ./certs/<cert_name>.pem admin@<Network_HSM_IP>:

3. Copy the appliance server certificate (server.pem) to $HOME/luna-docker/config/certs.

scp admin@<Network_HSM_IP>:server.pem ./certs

4. Register the appliance server certificate with the client.

/usr/safenet/lunaclient/bin/vtl addServer -c ./certs/server.pem -n

<Network_HSM_IP>

5. Connect via SSH to the Luna Network HSM appliance and log in to LunaSH.

ssh admin@<Network_HSM_IP>

6. Create a partition, if one does not already exist on the HSM.

lunash:>partition create -partition <partition_name>

7. Register the full Luna HSM client with the appliance, and assign the partition to the client.

lunash:>client register -client <client_name> {-ip <client_IP> | -hostname

<client_hostname>}

lunash:>client assignpartition -client <client_name> -partition

<partition_name>

lunash:>ntls ipcheck disable

lunash:>exit

8. On the client workstation, run LunaCM, set the active slot to the registered partition and initialize it.

lunacm:>slot set -slot <slotnum>

9. Initialize the application partition, to create the partition's Security Officer (SO), and set the initial password
and cloning domain.

lunacm:> partition init -label <par_label>

10. Log in as Partition SO. You can also use the shortcut po.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
14

role login -name Partition SO

11. Initialize the Crypto Officer role and set the initial password. You can also use the shortcut co.

role init -name Crypto Officer

12. The Partition SO can create the Crypto Officer, but only the Crypto Officer can create the Crypto User. You
must log out to allow the Crypto Officer to log in with the newly-set password.

role logout

NOTE: Once the Crypto Officer logs in and changes the initial credential set by the Partition
SO, applications using the CO's challenge secret/password can perform cryptographic

operations in the partition. The Crypto Officer can create, modify and delete crypto objects
within the partition, and use existing crypto objects (sign/verify). You can also create a
limited-capability role called Crypto User that can use the objects created by the Crypto
Officer, but cannot modify them. The separation of roles is important in some security
regimes and operational situations, and where you might be required to satisfy audit criteria

for industry or government oversight.

13. Log in as the Crypto Officer. You can also use the shortcut co.

lunacm:> role login -name Crypto Officer

NOTE: The password for the Crypto Officer role is valid for the initial login only. You must

change the initial password using the command role changepw during the initial login
session, or a subsequent login. Failing to change the password will result in a

CKR_PIN_EXPIRED error when you perform role-dependent actions.

14. Change the initial password set by the Partition SO, if you have not done so already.

lunacm:> role changepw -name Crypto Officer

15. Create the Crypto User. You can also use the shortcut cu.

lunacm:> role init -name Crypto User

The Crypto User can now log in with the credentials provided by the Crypto Officer, and change the initial
password. The Crypto User can now use applications to perform cryptographic operations using keys and
objects created in the partition by the Crypto Officer.

16. Change the path of the runtime libraries in config/Chrystoki.conf.

sed -i -e 's#\./certs#/usr/local/luna/config/certs#g' -e

's#/usr/safenet/lunaclient/lib/libCryptoki2_64.so#/usr/local/luna/libs/64/libCr

yptoki2.so#g' -e

's#/usr/safenet/lunaclient/lib/libSoftToken.so#/usr/local/luna/libs/64/libSoftT

oken.so#g' config/Chrystoki.conf

Docker Container: Integration Guide

Copyright © 2022 Thales Group
15

Create Luna Client Docker image

Create and run the Luna Docker Image to use the Luna Network HSM inside of the Docker Container. To create

the Luna Docker Image you must create the Docker Container for use with the Luna Network HSM. To create

the Luna Client Docker Image:

1. Create the file Dockerfile in the current working directory and add the following entries:

FROM centos:centos7

ARG MIN_CLIENT

COPY $MIN_CLIENT.tar /tmp

RUN mkdir -p /usr/local/luna

RUN tar xvf /tmp/$MIN_CLIENT.tar --strip 1 -C /usr/local/luna

ENV ChrystokiConfigurationPath=/usr/local/luna/config

COPY lunacm /usr/local/bin

COPY vtl /usr/local/bin

COPY multitoken /usr/local/bin

COPY ckdemo /usr/local/bin

ENTRYPOINT /bin/bash

#End of the Dockerfile

NOTE: The minimal client tarball does not include tools or files not necessary for basic

operation. Copy any additional files you would like to include in the Docker image (i.e.

lunacm, vtl, multitoken) to $HOME/luna-docker/ .

2. Build a Docker image.

docker build . --build-arg MIN_CLIENT=LunaClient-Minimal-

<release_version>.x86_64 -t lunaclient-image

3. Verify the Docker image was created.

docker images

Run Docker Container

Once configured, you must start the Docker Container to access the associated Luna Network HSM. To run

Docker Container:

1. Make the contents of the config directory available to the Containers when you create them, by mounting
the config directory as a volume.

docker run -it --name lunaclient -v $PWD/config:/usr/local/luna/config

lunaclient-image

2. From the Docker container, verify that the container has a connection to the Luna Network HSM partition.

./bin/64/lunacm

See Using the Luna HSM inside Docker Container for an application demonstration inside of a Docker using
Luna Network HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
16

Integrating Docker Swarm with Luna Cloud HSM

Docker can be configured in swarm mode. Swarm mode allows users to manage a cluster of Docker Engines or

nodes as a single virtual system. This section demonstrates integrating a Docker Swarm configuration with a

Luna Cloud HSM service. Luna Cloud HSM service provides strong physical protection of secure assets,

including keys, and should be considered a best practice when working with Docker Swarm.

 NOTE: This integration assumes that the Docker Swarm Cluster is up and running, and that

at least the Master and a single Node in the cluster exists.

This service provides your client machine with access to an HSM Application Partition for storing cryptographic

objects used by your applications. Application partitions can be assigned to a single client, or multiple clients

can be assigned to, and share, a single application partition. For detailed information, refer to the Configuring

Luna Cloud HSM Service section.

To use a Luna Cloud HSM service inside a Docker swarm, complete the following procedures:

 Create Luna Docker Image in Docker Registry

 Set up Docker Swarm Cluster

 Deploy application on Swarm Manager

Create Luna Docker Image in Docker Registry

Use Docker Registry to configure the Docker Image that you intend to integrate with the Luna Cloud HSM

service. Customize the Docker image for integration with Thales software. To create the Luna Docker image in

Docker Registry:

1. Download and unzip the service client package on the Master Node in a directory called /clientfiles. Copy
the certificates and configuration files to a directory called /secrets. Verify the contents in each directory.

ls clientfiles

bin etc EULA.zip jsp libs setenv

ls secrets

Chrystoki.conf partition-ca-certificate.pem partition-certificate.pem server-

certificate.pem

2. Create a file named Dockerfile in the current working directory and add following information to this file:

FROM ubuntu:xenial

RUN mkdir -p /usr/local/luna

COPY clientfiles /usr/local/luna

WORKDIR /usr/local/luna/

ENV ChrystokiConfigurationPath=/usr/local/luna

#End of the Dockerfile

3. Build the Docker image using the new Dockerfile

docker build . -t docker_swarm

Docker Container: Integration Guide

Copyright © 2022 Thales Group
17

4. Verify the image.

docker images

REPOSITORY TAG IMAGE ID CREATED

SIZE

docker_swarm latest f190c59cd551 About a minute ago

245MB

ubuntu xenial b9e15a5d1e1a 10 hours ago

115MB

5. Verify the Docker image is created.

docker images

6. Log in to Docker Hub. Provide username and password when prompted.

docker login

7. Tag the Docker image using the following command. Replace the <username> with your Docker Hub
username.

docker tag docker_swarm <username>/docker-swarm

8. Verify the newly tagged image is included in the Docker images list:

docker images

REPOSITORY TAG IMAGE ID CREATED

SIZE

<username>/docker-swarm latest f190c59cd551 2 minutes ago

245MB

docker_swarm latest f190c59cd551 2 minutes ago

245MB

ubuntu xenial b9e15a5d1e1a 10 hours ago

115MB

9. Push the image to the Docker hub.

docker push <username>/docker-swarm

Verify that the image is available now on Docker hub

NOTE: You can make the Docker Hub repo private by accessing the following: Details >

settings > Make private > Enter tag name > Confirm on Docker hub.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
18

Set up Docker Swarm Cluster

Set up the nodes in the Docker Swarm cluster for integration with the Luna Cloud HSM service. To set up a

Docker Swarm Cluster:

1. Create the virtual machines for the Docker Swarm Cluster using the virtualbox driver:

docker-machine create --driver virtualbox myvm1

docker-machine create --driver virtualbox myvm2

docker-machine create --driver virtualbox myvm3

2. List the virtual machines and get their ip addresses using following command:

docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

myvm1 - virtualbox Running tcp://192.168.99.100:2376 v18.06.1-ce

myvm2 - virtualbox Running tcp://192.168.99.101:2376 v18.06.1-ce

myvm3 - virtualbox Running tcp://192.168.99.102:2376 v18.06.1-ce

3. Initialize the Swarm and add the node.

docker-machine ssh myvm1 "docker swarm init --advertise-addr 192.168.99.100"

The first machine, myvm1, acts as the manager, which executes management commands and
authenticates workers to join the swarm, and the second machine functions as a worker.

4. Add the remaining machines to the configuration as workers.

docker-machine ssh myvm2 "docker swarm join --token SWMTKN-1-

3vcz1rkswq78s7t5sor3hrlbmzda4z523g8rnwkb8m8nd7tnpt-9uk7csvuieqqdg4b85nkk5ty9

192.168.99.100:2377"

docker-machine ssh myvm3 "docker swarm join --token SWMTKN-1-

3vcz1rkswq78s7t5sor3hrlbmzda4z523g8rnwkb8m8nd7tnpt-9uk7csvuieqqdg4b85nkk5ty9

192.168.99.100:2377"

5. Execute docker node ls on the manager, myvm1, to view the nodes in the swarm.

docker-machine ssh myvm1 "docker node ls"

ID HOSTNAME STATUS AVAILABILITY MANAGER
STATUS ENGINE VERSION

qsanp3vxs2mtccv9wk8fxdwur * myvm1 Ready Active Leader
18.06.1-ce

dac4sgcob2i4djab0vp74pay5 myvm2 Ready Active
18.06.1-ce

73gsgheap7x7c3n35de9nn0mb myvm3 Ready Active
18.06.1-ce

Docker Container: Integration Guide

Copyright © 2022 Thales Group
19

Deploy application on Swarm Manager

Execute the following on the Manager Node to configure the Luna Cloud HSM service for your swarm

configuration. To deploy application on swarm manager:

1. Copy all the secret files to the swarm manager.

docker-machine scp -r -d secrets/ myvm1:/home/docker/

2. SSH to the manager myvm1.

docker-machine ssh myvm1

3. Create a local copy of docker-compose.yml on the manager:

version: '3.1'

services:

test:

image: <username>/docker-swarm:latest

command: 'cat /run/secrets/luna_secret '

stdin_open: true

tty: true

secrets:

- source: chrystoki-conf

target: /usr/local/luna/Chrystoki.conf

- source: partition-ca-certificate

target: /usr/local/luna/partition-ca-certificate.pem

- source: partition-certificate

target: /usr/local/luna/partition-certificate.pem

- source: server-certificate

target: /usr/local/luna/server-certificate.pem

deploy:

replicas: 5

resources:

limits:

cpus: "0.1"

memory: 50M

secrets:

chrystoki-conf:

file: ./Chrystoki.conf

partition-ca-certificate:

file: ./partition-ca-certificate.pem

Docker Container: Integration Guide

Copyright © 2022 Thales Group
20

partition-certificate:

file: ./partition-certificate.pem

server-certificate:

file: ./server-certificate.pem

4. Change the path in the Chrystoki.conf file on the Manager node, so that it points to the secrets:

$ sed -i 's#\./#/usr/local/luna/#g' Chrystoki.conf

5. Deploy the service.

$ docker stack deploy -c docker-compose.yml latest

6. Run Docker.

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

66c57a9aa7da deegupta1302/docker-swarm:latest "/bin/bash" About a minute ago Up
About a minute latest_test.1.kot01ixg1oe8he3cixodk4hv7

7. Access the Docker container.

$ docker exec -it latest_test.1.kot01ixg1oe8he3cixodk4hv7 /bin/bash

Now you are inside container.

8. Access LunaCM from the Docker container.

cd /usr/local/luna/

./bin/64/lunacm

LunaCM v1.0.0-638. Copyright (c) 2006-2017 SafeNet.

Available HSMs:

 Slot Id -> 3

 Label -> dockerswarm

 Serial Number -> 1285255181019

 Model -> Luna K7

 Firmware Version -> 7.1.1

 Configuration -> Luna User Partition With SO (PW) Signing With

Cloning Mode

 Slot Description -> User Token Slot

 Current Slot Id: 3

9. SSH to the worker node myvm2.

docker-machine ssh myvm2

Docker Container: Integration Guide

Copyright © 2022 Thales Group
21

10. Run the Docker image on worker node myvm2.

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

4c2912fec394 deegupta1302/docker-swarm:latest "/bin/bash" 3 minutes ago Up 2
minutes latest_test.4.15m3zn8a8606r9zbfmnf3qypb

fd92e2aab65a deegupta1302/docker-swarm:latest "/bin/bash" 3 minutes ago Up 2
minutes latest_test.2.u3ion33z3sjuwafg85hnawoej

11. Access the worker node myvm2.

$ docker exec -it latest_test.4.15m3zn8a8606r9zbfmnf3qypb /bin/bash

Now you are inside container

12. Access LunaCM from the worker node myvm2.

cd /usr/local/luna/

root@4c2912fec394:/usr/local/luna# ./bin/64/lunacm

LunaCM v1.0.0-638. Copyright (c) 2006-2017 SafeNet.

 Available HSMs:

 Slot Id -> 3

 Label -> dockerswarm

 Serial Number -> 1285255181019

 Model -> Luna K7

 Firmware Version -> 7.1.1

 Configuration -> Luna User Partition With SO (PW) Signing With

Cloning Mode

 Slot Description -> User Token Slot

 Current Slot Id: 3

13. SSH to the worker node myvm3.

docker-machine ssh myvm3

14. Run the Docker image on worker node myvm3.

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

eff7be65c9ec deegupta1302/docker-swarm:latest "/bin/bash" 4 minutes ago Up 4
minutes latest_test.3.j9ylpdoiiza71ijdk7y50xfnz

13383a82145a deegupta1302/docker-swarm:latest "/bin/bash" 4 minutes ago Up 4
minutes latest_test.5.o986y3yj840copcv58qhtjgrw

15. Access the worker node myvm3.

docker exec -it latest_test.3.j9ylpdoiiza71ijdk7y50xfnz /bin/bash

Now you are inside container

Docker Container: Integration Guide

Copyright © 2022 Thales Group
22

16. Access LunaCM from the worker node myvm3.

cd /usr/local/luna/

./bin/64/lunacm

LunaCM v1.0.0-638. Copyright (c) 2006-2017 SafeNet.

 Available HSMs:

 Slot Id -> 3

 Label -> dockerswarm

 Serial Number -> 1285255181019

 Model -> Luna K7

 Firmware Version -> 7.1.1

 Configuration -> Luna User Partition With SO (PW) Signing With

Cloning Mode

 Slot Description -> User Token Slot

 Current Slot Id: 3

See Using Luna Cloud HSM service client inside Docker Container for an application demonstration inside of a

Docker using Luna Cloud HSM.

Integrating Kubernetes with Luna Network HSM
Kubernetes is an open-source system for automating deployment, scaling, and management of containerized

applications. This section demonstrates integrating Kubernetes with a Luna HSM. Luna Network HSM provides

strong physical protection of secure assets, including keys, and should be considered a best practice when

working with Kubernetes.

NOTE: This integration assumes that a Kubernetes cluster is up and running, and that at
least the Master and a single Node in the cluster exists. You can verify the state of your

Kubernetes cluster by executing “kubectl get nodes”.

Provision Luna Network HSM

To provision your Luna Network HSM:

HSM is setup, initialized, provisioned, and ready for deployment. Refer to the Luna HSM Product

Documentation for further details.

1. Create a partition on the HSM for use by Kubernetes.

2. Register the client for the Kubernetes Master and assign the client to a partition to create an NTLS
connection.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
23

3. Disable the IP checking for NTLS by executing the following on the Luna console:

lunash:> ntls ipcheck disable

NTLS client source IP validation disabled

Command Result: 0 (Success)

4. Initialize the Crypto Officer and Crypto User roles for the partition.

5. Verify that the partition is successfully registered and configured on Kubernetes Master.

cd /usr/safenet/lunaclient/bin/lunacm

lunacm (64-bit) v7.2.0-220. Copyright (c) 2018 SafeNet. All rights reserved.

 Available HSMs:

 Slot Id -> 0

 Label -> Kubernetes_CLS

 Serial Number -> 1238712343066

 Model -> LunaSA 7.2.0

 Firmware Version -> 7.2.0

 Configuration -> Luna User Partition With SO (PED) Key Export With

Cloning Mode

 Slot Description -> Net Token Slot

 Current Slot Id: 0

Configure and install Luna Minimal Client in Kubernetes

Configure and install the Luna minimal client in Kubernetes to create a Pod communicating with the Luna HSM

partition over NTLS.

NOTE: Please refer the APPENDIX C: Using Luna Client from Host to Kubernetes Pods if

you want to use Luna Client configured on the host system via Kubernetes volumes without

installing any client inside the pod.

Complete the following procedures on the Kubernetes Master. Any configuration updates to the Kubernetes

Master will automatically deploy on any Nodes connected to the Master.

 Create the Luna Client Image in Docker Registry

 Create the Kubernetes Secrets

 Deploy a Pod using the Luna Client Image and Kubernetes Secret

Create the Luna Client Image in Docker Registry

Create a Docker image containing the minimal required packages and utilities for communicating with the Luna

HSM. To create the Luna client image in Docker registry:

1. Copy the Luna minimal client package on the Kubernetes Master.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
24

2. Create the file Dockerfile in the directory where Luna Minimal Client package is copied with the following
contents.

cat Dockerfile

FROM centos:centos7

COPY LunaClient-Minimal-7.x.x.x86_64.tar /tmp

RUN mkdir -p /usr/safenet/lunaclient

RUN mkdir -p /usr/safenet/lunaclient/bin

RUN mkdir -p /usr/safenet/lunaclient/certs

RUN mkdir -p /usr/safenet/lunaclient/certs/client

RUN mkdir -p /usr/safenet/lunaclient/certs/server

RUN tar -xvf /tmp/LunaClient-Minimal-7.x.x.x86_64.tar --strip 1 -C

/usr/safenet/lunaclient

ENV ChrystokiConfigurationPath=/etc

COPY lunacm /usr/safenet/lunaclient/bin

COPY vtl /usr/safenet/lunaclient/bin

COPY openssl.cnf /usr/safenet/lunaclient/bin

ENTRYPOINT /bin/bash

3. Create a Docker build using the new Dockerfile.

docker build . -t lunaclient

4. Verify that the image is created.

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

lunaclient latest 13b904fbddc2 4 days ago 240MB

centos centos7 75835a67d134 6 days ago 200MB

k8s.gcr.io/kube-apiserver v1.12.0 ab60b017e34f 2 weeks ago 194MB

k8s.gcr.io/kube-controller-manager v1.12.0 07e068033cf2 2 weeks ago 164MB

k8s.gcr.io/kube-scheduler v1.12.0 5a1527e735da 2 weeks ago 8.3MB

k8s.gcr.io/kube-proxy v1.12.0 9c3a9d3f09a0 2 weeks ago 6.6MB

k8s.gcr.io/etcd 3.2.24 3cab8e1b9802 3 weeks ago 220MB

k8s.gcr.io/coredns 1.2.2 367cdc8433a4 6 weeks ago 9.2MB

quay.io/coreos/flannel v0.10.0-amd64 f0fad859c909 8 months ago 44MB

k8s.gcr.io/pause 3.1 da86e6ba6ca1 9 months ago 742kB

5. Log in to Docker Hub.

docker login

6. Tag the lunaclient build using the command below. Replace the <username> with your Docker hub
username.

docker tag lunaclient <username>/lunaclient

Docker Container: Integration Guide

Copyright © 2022 Thales Group
25

7. Push the lunaclient image to Docker hub.

docker push <username>/lunaclient

Create the Kubernetes Secrets

Kubernetes secrets are used to pass sensitive information at run time without exposing them publicly. In this

step, we will create Kubernetes secret for client/server certificates and configuration file containing server and

client information. To create Kubernetes secrets:

1. Create a server certificate secret and a CA certificate secret. In the following command replace the <server
IP> with the actual HSM IP.

kubectl create secret generic server-auth --from-

file=/usr/safenet/lunaclient/cert/server/<server IP>Cert.pem --from-

file=/usr/safenet/lunaclient/cert/server/CAFile.pem

2. Create a client certificate secret and a client private key secret. In the following command replace the
<hostname> with the actual client hostname where Kubernetes Master is running.

kubectl create secret generic client-auth --from-

file=/usr/safenet/lunaclient/cert/client/<hostname>.pem --from-

file=/usr/safenet/lunaclient/cert/client/<hostname>Key.pem

3. Edit the following sections of the /etc/Chrystoki.conf file to use the Luna Minimal Client.

 NOTE: Do not change any other section of the Chrystoki.conf file.

Chrystoki2 = {

 LibUNIX = /usr/safenet/lunaclient/libs/64/libCryptoki2.so;

 LibUNIX64 = /usr/safenet/lunaclient/libs/64/libCryptoki2.so;

}

Secure Trusted Channel = {

 ClientTokenLib = /usr/safenet/lunaclient/libs/64/libSoftToken.so;

}

4. Create a configuration file secret.

kubectl create secret generic chrystoki-conf --from-file=/etc/Chrystoki.conf

5. Verify that the secrets exist. You should have a server certificate secret, a CA certificate secret, a client
certificate secret, a client private key secret, and a configuration file secret.

kubectl get secrets

NAME TYPE DATA AGE

chrystoki-conf Opaque 1 4d15h

client-auth Opaque 2 4d15h

default-token-8wtbg kubernetes.io/service-account-token 3 10d

server-auth Opaque 2 4d15h

Docker Container: Integration Guide

Copyright © 2022 Thales Group
26

Deploy a Pod using the Luna Client Image and Kubernetes Secret

Deploy a Pod on Kubernetes using the Luna Client Image that was pushed to the Docker Registry and a

Kubernetes secret. At the end of deployment, the Pod will start running on all Nodes with an NTLS connection

to the HSM partition. To deploy a pod using the Luna Client Image and Kubernetes secret:

1. Create a yaml file for Pod deployment e.g. secret-volume.yaml. Add the following entries to the secret-
volume.yaml. Replace <username> with your Docker Hub username:

cat secret-volume.yaml

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-lunaclient

spec:

 containers:

 - name: lunaclient

 image: <username>/lunaclient

 # Just spin & wait forever

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 volumeMounts:

 - name: myconf

 mountPath: /etc

 mountPath: /etc/Chrystoki.conf

 subPath: Chrystoki.conf

 readOnly: true

 - name: myserver

 mountPath: /usr/safenet/lunaclient/cert/server

 readOnly: true

 - name: myclient

 mountPath: /usr/safenet/lunaclient/cert/client

 readOnly: true

 volumes:

 - name: myconf

 secret:

 secretName: chrystoki-conf

 - name: myserver

 secret:

 secretName: server-auth

Docker Container: Integration Guide

Copyright © 2022 Thales Group
27

 - name: myclient

 secret:

 secretName: client-auth

2. Create a pod deployment using the kubectl command and yaml file created above.

kubectl create -f secret-volume.yaml

This may take a few minutes.

3. Verify the deployment status.

kubectl get pods

NAME READY STATUS RESTARTS AGE

pod-with-lunaclient 1/1 Running 0 4d2h

4. When STATUS is RUNNING, you can connect the pod to verify the NTLS connection. Execute the following
command on the Master or any Node connected to the Master:

kubectl exec -it pod-with-lunaclient -- /bin/bash

[root@pod-with-lunaclient /]#

5. Verify that the pod can access the HSM partition.

[root@pod-with-lunaclient /]# /usr/safenet/lunaclient/bin/lunacm

lunacm (64-bit) v7.2.0-220. Copyright (c) 2018 SafeNet. All rights reserved.

 Available HSMs:

 Slot Id -> 0

 Label -> Kubernetes_CLS

 Serial Number -> 1238712343066

 Model -> LunaSA 7.1.0

 Firmware Version -> 7.1.0

 Configuration -> Luna User Partition With SO (PED) Key Export With

Cloning Mode

 Slot Description -> Net Token Slot

 Current Slot Id: 0

This completes the integration of Kubernetes with a Luna HSM. To verify the integration with the Luna HSM,
run any application in the Pod that uses the HSM services. See Using the Luna HSM inside Docker
Container for Java Code Signing demonstration inside of a Docker.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
28

Integrating OpenShift Origin with Luna Cloud HSM

OpenShift is a container application platform for Docker and Kubernetes. Luna Cloud HSM service provides

strong physical protection of secure assets, including keys, and should be considered a best practice when

working with OpenShift Origin.

NOTE: This integration assumes that an OpenShift Origin Cluster with a configured registry,

router, image streams, and default templates is deployed and operating on the host system.

Following are the steps involved in using Luna Cloud HSM service with OpenShift Origin:

 Provision Luna Cloud HSM service

 Deploy OpenShift Origin pod

Provision Luna Cloud HSM service

This service enables your client machine to access an HSM application partition for storing cryptographic

objects. Application partitions can be assigned to a single client or multiple clients can share a single application

partition. To provision Luna Cloud HSM service:

1. Log in to Luna Cloud HSM as an Application Owner user.

2. Under the Services tab, select the Add New Service heading.

3. Click Deploy on the HSM on Demand tile. The service wizard will appear on your screen.

4. Review the terms of services, accept these terms by checking the checkbox, and then click Next.

5. On the Add HSM on Demand service page, provide a Service Name (e.g. fordocker)

6. Click the service name. The Create Service Client window will appear on your screen.

7. In the Create Service Client window, enter a Service Client Name (e.g. fordocker_client) and select

Create Service Client. A new HSM service client package (in this case, ForDocker_client.zip) gets

generated and is ready to be downloaded and installed on your client machine.

8. Transfer the client package to your host machine. You can use SCP, PSCP, WinSCP, FTPS, or some other
secure transfer tool to transfer the client package.

NOTE: Refer to the section HSM On Demand Services in the Luna Cloud HSM Application

Owner Guide for detailed information.

Deploy OpenShift Origin pod

Configure Luna Cloud HSM to function in an OpenShift Origin pod. A pod is one or more containers deployed

together on one host, and the smallest compute unit that can be defined, deployed, and managed. Each pod is

allocated its own internal IP address, therefore owning its entire port space, and containers within pods can

share their local storage and networking. You can deploy Luna Cloud HSM service inside an OpenShift Origin

pod using one of the following methods:

 Deploy OpenShift Origin pod using persistent volume (Method I)

 Deploy OpenShift Origin pod using task file (Method II)

https://www.thalesdocs.com/dpod/services/luna_cloud_hsm/index.html
https://www.thalesdocs.com/dpod/services/luna_cloud_hsm/index.html

Docker Container: Integration Guide

Copyright © 2022 Thales Group
29

Deploy OpenShift Origin pod using persistent volume (Method I)

Containers in Openshift don’t persist data. Every time you start an application, it is started in a new container

with an immutable Docker image. Any persisted data in the file systems is lost when the container stops. As a

result, if a container is rebuilt or restarted, you cannot view previous data. We recommend using Persistent

Volume. You can share this Persistent Volume with multiple pods at a time. Following are the steps involved in

deploying OpenShift Origin using persistent volume:

 Create Luna Docker image

 Configure Luna Cloud HSM service inside OpenShift Origin

 Configure OpenShift Origin pod to run with root privileges

 Add persistent volume to the pod

 Create persistent volume using the Web interface

 Copy Secrets to Persistent Volume

 Configure Luna Cloud HSM inside a pod

Create Luna Docker Image

To use a Luna Cloud HSM service with OpenShift Origin, you must create and run the Luna Docker image.

Create the Docker file and extract the Luna Cloud HSM service inside the Docker container. To create the Luna

Docker image:

1. Unzip the downloaded client package and store the files in a directory named clientfiles excluding
certificates and configuration file which have server and client information.

ls clientfiles/

bin etc EULA.zip jsp libs setenv

2. Store the certificates and configuration file in separate directory named secrets.

ls secrets

Chrystoki.conf partition-ca-certificate.pem partition-certificate.pem server-

certificate.pem

3. Create a file named Dockerfile in the current working directory and add the following information to this file:

FROM centos:centos7

RUN mkdir -p /usr/local/luna

COPY clientfiles /usr/local/luna

ENV ChrystokiConfigurationPath=/usr/local/luna/secrets

CMD ["sh", "-c", "tail -f /dev/null"]

#End of the Dockerfile

4. Build the Docker image using the Dockerfile.

docker build . -t dpod-image

5. Verify that the Docker image was created.

docker images

Docker Container: Integration Guide

Copyright © 2022 Thales Group
30

6. Log in to Docker Registry. Provide username and password for Docker Registry when prompted.

docker login

7. Tag the lunaclient build using the following command. Replace the <username> with your Docker registry
username.

docker tag dpod-image <username>/dpod

8. Push the image to the docker hub.

docker push <username>/dpod

Configure Luna Cloud HSM service inside OpenShift Origin

Configure Luna Cloud HSM service inside of OpenShift Origin for use with OpenShift Origin. To configure Luna

Cloud HSM service inside OpenShift Origin:

1. Create a project in OpenShift.

oc new-project mylunaproject

2. Create an app within the project.

oc new-app --docker-image=<username>/dpod --name=mylunaapp

The application will automatically deploy on a pod.

3. List all the pods and their status.

oc get pods

You will see output similar to the following:

4. Verify the pod on the OpenShift web console:

Docker Container: Integration Guide

Copyright © 2022 Thales Group
31

Configure OpenShift Origin pod to run with root privileges

On the initial login to the pod console, the default user in non-root. To configure OpenShift Origin pod to run

with root privileges:

1. Create a service account and associate it with the Luna Cloud HSM project.

oc login -u system:admin

oc create serviceaccount useroot

oc adm policy add-scc-to-user anyuid -z useroot -n mylunaproject

2. Apply the patch to the application:

oc patch dc/mylunaapp --patch

'{"spec":{"template":{"spec":{"serviceAccountName": "useroot"}}}}'

This applies the patch to all Pods. You can now run the Pods with root privileges.

Add persistent volume to the pod

Persistent volume is used to share the certificates and configuration files from local to all the pods. To create

persistent volume over the command line interface (CLI), run the following command to create a persistent

storage and mount it to /usr/local/luna/secrets:

oc set volume dc/mylunaapp --add --name=tmp-mount --claim-name=mylunastorage

--claim-mode="ReadWriteMany" --type pvc --claim-size=1G --mount-path

/usr/local/luna/secrets

Create persistent volume using the Web interface

1. Log in to the OpenShift Origin web portal.

2. Go to the storage section of mylunaproject.

3. Click Create Storage.

4. Provide the following field values:

Name=mylunastorage

Access Mode=Shared Access(RWX)

Size=1GiB

5. Click Create. Persistent storage generates.

6. Navigate to the application mylunaapp and click Add storage to mylunaapp.

7. Select Storage as mylunastorage.

8. Provide following fields values:

Mount Path=/usr/local/luna/secrets

Leave volume and Subpath name blank.

For this deployment config, do not select "read only" and "pause rollout" options.

9. Click on Add. All the pods will automatically restart.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
32

Copy Secrets to Persistent Volume

You need to copy the secrets directory to the persistent volume added to the Pods so that it has access to the

certificates and configuration file need to run the Luna Cloud HSM service. To copy secrets to persistent

volume:

1. Make changes to chrystoki.conf file before copying it to the storage:

sed -i -e 's#\./#/usr/local/luna/#g' Chrystoki.conf

sed -i -e 's#partition-ca-certificate.pem#secrets/partition-ca-

certificate.pem#g' -e 's#partition-certificate.pem#secrets/partition-

certificate.pem#g' -e 's#server-certificate.pem#secrets/server-

certificate.pem#g' Chrystoki.conf

2. Get the running pod name with following command.

oc get pods

3. Select any latest running pod name for example mylunaapp-1-qlfc4. Copy the secrets with following
command:

oc rsync /root/secrets mylunaapp-1-v6jh9:/usr/local/luna/

As the persistent storage was already mounted on /usr/local/luna/secrets, so the secrets will copied to the
persistent storage and will be available to all the pods.

Configure Luna Cloud HSM inside a pod

To configure Luna Cloud HSM service inside a pod:

1. Open the terminal.

oc rsh mylunaapp-1-v6jh9

2. Run lunacm and verify the connection to the partition:

cd /usr/local/luna/bin/64/

./lunacm

3. Initialize the application partition, to create the partition's Security Officer (SO), and set the initial password
and cloning domain.

lunacm:> partition init -label <par_label>

4. Log in as Partition SO. You can also use the shortcut po.

lunacm:> role login -name Partition SO

5. Initialize the Crypto Officer role and set the initial password. You can also use the shortcut co.

lunacm:> role init -name Crypto Officer

6. The Partition SO can create the Crypto Officer, but only the Crypto Officer can create the Crypto User. You
must log out to allow the Crypto Officer to log in with the newly-set password.

lunacm:> role logout

Docker Container: Integration Guide

Copyright © 2022 Thales Group
33

NOTE: Once the Crypto Officer logs in and changes the initial credential set by the Partition

SO, applications using the Crypto Officer challenge secret/password can perform
cryptographic operations in the partition. The Crypto Officer can create, modify and delete
crypto objects within the partition, and use existing crypto objects (sign/verify). You can also
create a limited-capability role called Crypto User that can use the objects created by the
Crypto Officer, but cannot modify them. The separation of roles is important in some security
regimes and operational situations, and where you might be required to satisfy audit criteria

for industry or government oversight.

7. Log in as the Crypto Officer. You can also use the shortcut co.

lunacm:> role login -name Crypto Officer

NOTE: The password for the Crypto Officer role is valid for the initial login only. You must
change the initial password using the command role changepw during the initial login

session, or a subsequent login. Failing to change the password will result in a

CKR_PIN_EXPIRED error when you perform role-dependent actions.

8. Change the initial password set by the Partition SO if you have not done so already.

lunacm:> role changepw -name Crypto Officer

9. Create the Crypto User. You can also use the shortcut cu.

lunacm:> role init -name Crypto User

The Crypto User can now log in with the credentials provided by the Crypto Officer and change the initial
password. The Crypto User can now use applications to perform cryptographic operations using keys and
objects created in the partition by the Crypto Officer.

10. You can scale up or down for the number of pods you want. To scale up or down, use the following
command:

oc scale dc mylunaapp --replicas=3

oc get pods

NAME READY STATUS RESTARTS AGE

mylunaapp-1-v6jh9 1/1 Running 0 5m

mylunaapp-1-qnt5r 1/1 Running 0 18s

mylunaapp-1-rtn4f 1/1 Running 0 18s

This completes the integration of OpenShift Origin with Luna Cloud HSM. To verify the integration with the
Luna Cloud HSM service, run any application in the Pod that uses the HSM services.

See Using Luna Cloud HSM service client inside Docker Container for Java Code Signing demonstration
inside of OpenShift Pod using Luna Cloud HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
34

Deploy OpenShift Origin pod using task file (Method II)

Containers in OpenShift Origin can be deployed and configured using a task file. Compile the task file and

deploy the OpenShift Origin pods.

Create the Luna Docker Image

To use a Luna Cloud HSM service with OpenShift Origin you must create and run the Luna Docker image.

Create the Docker file and extract the Luna Cloud HSM service inside of the Docker container. To create Luna

Docker image:

1. Unzip the downloaded client package and store the files in a directory named clientfiles excluding
certificates and configuration file which have server and client information.

ls clientfiles/

bin etc EULA.zip jsp libs setenv

2. Store the certificates and configuration file in separate directory named secrets.

ls secrets

Chrystoki.conf partition-ca-certificate.pem partition-certificate.pem server-

certificate.pem

3. Create a file named Dockerfile in the current working directory and add the following information to this file:

 FROM centos:centos7

 RUN mkdir -p /usr/local/luna

 COPY clientfiles /usr/local/luna

 ENV ChrystokiConfigurationPath=/usr/local/luna/secrets

 ENTRYPOINT /bin/bash

 #End of the Dockerfile

4. Build the Docker image using the new Dockerfile.

docker build . -t dpod-image

5. Verify the Docker image was created.

docker images

6. Log in to Docker registry. Provide username and password for Docker registry when prompted.

 # docker login

7. Tag the lunaclient build using the following command. Replace the <username> with your Docker registry
username.

docker tag dpod-image <username>/dpod

8. Push the image to Docker hub.

docker push <username>/dpod

Configure Luna Cloud HSM service inside OpenShift Origin

Configure Luna Cloud HSM service inside of OpenShift Origin for use with OpenShift Origin. To configure the

Luna Cloud HSM service inside OpenShift Origin:

Docker Container: Integration Guide

Copyright © 2022 Thales Group
35

1. Create a project in OpenShift:

oc new-project mylunaproject

2. Update the Chrystoki.conf file in secrets directory using the following command:

sed -i -e 's#\./#/usr/local/luna/#g' Chrystoki.conf

sed -i -e 's#partition-ca-certificate.pem#secrets/partition-ca-

certificate.pem#g' -e 's#partition-certificate.pem#secrets/partition-

certificate.pem#g' -e 's#server-certificate.pem#secrets/server-

certificate.pem#g' Chrystoki.conf

3. Create the a generic secret with the following command:

oc create secret generic mysecrets --from-file=/root/secrets/Chrystoki.conf -

-from-file=/root/secrets/partition-ca-certificate.pem --from-

file=/root/secrets/partition-certificate.pem --from-file=/root/secrets/server-

certificate.pem

4. Verify the secrets:

oc get secrets

NAME TYPE DATA AGE

builder-dockercfg-htkjj kubernetes.io/dockercfg 1 4m

builder-token-2llws kubernetes.io/service-account-token 4 4m

builder-token-ntjmd kubernetes.io/service-account-token 4 4m

default-dockercfg-zxs9c kubernetes.io/dockercfg 1 4m

default-token-g9bpf kubernetes.io/service-account-token 4 4m

default-token-hk45v kubernetes.io/service-account-token 4 4m

deployer-dockercfg-2pgbz kubernetes.io/dockercfg 1 4m

deployer-token-46gf8 kubernetes.io/service-account-token 4 4m

deployer-token-pfkzw kubernetes.io/service-account-token 4 4m

mysecrets Opaque 4 3m

5. Create a configuration file deploypod.yaml and add the following information to it:

apiVersion: v1

kind: Pod

metadata:

 name: mylunaapp-pod

spec:

 containers:

 - image: 'namespace/dpod'

 # Just spin & wait forever

 name: mylunaapp

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 volumeMounts:

Docker Container: Integration Guide

Copyright © 2022 Thales Group
36

 - name: lunasecret

 mountPath: /usr/local/luna/secrets

 readOnly: true

 volumes:

 - name: lunasecret

 secret:

 secretName: mysecrets

6. Deploy the application using the new deployment file.

oc create -f deploypod.yaml

7. List all pods and their status.

oc get pods

NAME READY STATUS RESTARTS AGE

mylunaapp-pod 1/1 Running 0 45s

Configure pod to run with root privileges

On the initial login to the pod console, the default user in non-root. Complete the following procedure to enable

root permissions, allowing the user to execute luna client utilities. To configure pod to run with root privileges:

1. Create a service account and associate it with the project.

oc login -u system:admin

oc create serviceaccount useroot

oc adm policy add-scc-to-user anyuid -z useroot -n mylunaproject

2. Apply the patch to the application.

oc patch dc/mylunaapp --patch

'{"spec":{"template":{"spec":{"serviceAccountName": "useroot"}}}}'

This applies the patch to all Pods. You can now run the Pods with root privileges.

Configure Luna Cloud HSM service inside Pods

Execute the following on the terminal of a Pod where you want to use the Luna Cloud HSM service. To

configure the Luna Cloud HSM service inside pods:

1. Open the terminal:

oc rsh mylunaapp-pod

2. Run lunacm and verify the connection to the partition.

bin/64/lunacm

./lunacm

3. Initialize the application partition to create the partition's Security Officer (SO) and set the initial password
and cloning domain.

lunacm:> partition init -label <par_label>

Docker Container: Integration Guide

Copyright © 2022 Thales Group
37

4. Log in as Partition SO. You can also use the shortcut po.

lunacm:> role login -name Partition SO

5. Initialize the Crypto Officer role and set the initial password. You can also use the shortcut co.

lunacm:> role init -name Crypto Officer

6. The Partition SO can create the Crypto Officer, but only the Crypto Officer can create the Crypto User. You
must log out to allow the Crypto Officer to log in with the newly set password.

lunacm:> role logout

7. Log in as the Crypto Officer. You can also use the shortcut co.

lunacm:> role login -name Crypto Officer

NOTE: The password for the Crypto Officer role is valid for the initial login only. You must

change the initial password using the command role changepw during the initial login
session, or a subsequent login. Failing to change the password will result in a

CKR_PIN_EXPIRED error when you perform role-dependent actions.

8. Change the initial password set by the Partition SO if you have not done so already.

lunacm:> role changepw -name Crypto Officer

9. Create the Crypto User. You can also use the shortcut cu.

lunacm:> role init -name Crypto User

The Crypto User can now log in with the credentials provided by the Crypto Officer, and change the initial
password. The Crypto User can now use applications to perform cryptographic operations using keys and
objects created in the partition by the Crypto Officer.

10. You can scale up or down for the number of pods you want. To scale up or down, use the following
command:

oc scale dc mylunaapp --replicas=3

oc get pods

NAME READY STATUS RESTARTS AGE

mylunaapp-1-v6jh9 1/1 Running 0 5m

mylunaapp-1-qnt5r 1/1 Running 0 18s

mylunaapp-1-rtn4f 1/1 Running 0 18s

This completes the integration of OpenShift Origin with Luna Cloud HSM. To verify the integration with the
Luna Cloud HSM service, run any application in the Pod that uses the HSM services.

See Using Luna Cloud HSM service client inside Docker Container for an application demonstration inside
of OpenShift Pod using Luna Cloud HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
38

Integrating Apache Mesos with Luna Cloud HSM

Apache Mesos makes it easier to develop and manage fault-tolerant and scalable distributed applications.

Mesos is a cluster manager aiming for improved resource utilization by dynamically sharing resources among

multiple frameworks. Luna Cloud HSM service provides strong physical protection of secure assets, including

keys, and should be considered a best practice when working with Apache Mesos. The steps involved in

integrating Apache Mesos with Luna HSM are:

 Provision Luna Cloud HSM service for Apache Mesos

 Configure Luna Cloud HSM in Apache Mesos

 Create Luna Docker image

 Create a sample application in Marathon

 Start interactive session with Docker container

NOTE: This integration assumes that an Apache Mesos has been set up with an active

Master node (elected using ZooKeeper) and at least one slave node.

Provision Luna Cloud HSM service for Apache Mesos

This service enables your client machine to access an HSM application partition for storing cryptographic

objects. Application partitions can be assigned to a single client, or multiple clients can share a single

application partition. To provision Luna Cloud HSM service for Apache Mesos:

1. Log in to Luna Cloud HSM as an Application Owner user.

2. Under the Services tab, select the Add New Service heading.

3. Click Deploy on the HSM on Demand tile. The service wizard displays.

4. Review the terms of service, accept these terms by checking the checkbox, and then click Next.

5. On the Add HSM on Demand service page, provide a Service Name (for example, fordocker)

6. Click the service name. The Create Service Client window will appear on your screen.

7. In the Create Service Client window, enter a Service Client Name (for example, fordocker_client) and

select Create Service Client. A new HSM service client package (in this case, ForDocker_client.zip)

gets generated and is ready to be downloaded and installed on your client machine.

8. Transfer the client package to your host machine. You can use SCP, PSCP, WinSCP, FTPS, or some other
secure transfer tool to transfer the client package.

NOTE: Refer to the section HSM On Demand Services in the Luna Cloud HSM Application

Owner Guide for detailed information on configuring an HSM on Demand service.

Configure Luna Cloud HSM in Apache Mesos

Create the Luna Docker image and upload the Luna Docker Image as a sample application operating within the

Docker Container, and then open an interactive session with the Docker Container.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
39

Create Luna Docker image

To use Luna Cloud HSM service with Apache Mesos, you must create and run Luna Docker image. To create

the Luna Docker image:

1. Unzip the downloaded client package and store the files in a directory named clientfiles, excluding
certificates and configuration file which have server and client information.

ls clientfiles/

bin etc EULA.zip jsp libs setenv

2. Store the certificates and configuration file in separate directory named secrets.

ls secrets

Chrystoki.conf partition-ca-certificate.pem partition-certificate.pem server-

certificate.pem

3. Create the file Dockerfile in the current working directory and add the following information:

FROM centos:centos7

RUN mkdir -p /usr/local/luna

COPY clientfiles /usr/local/luna

ENV ChrystokiConfigurationPath=/usr/local/luna

CMD ["sh", "-c", "tail -f /dev/null"]

#End of the Dockerfile

4. Create a zip file named secrets.zip that contains all the files of directory secrets.

5. Build the Docker Image using the new Dockerfile.

docker build . -t dpod-image

6. Verify that the Docker Image was created

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

dpod-image latest 8099de65ceb5 4 seconds ago 217MB

centos centos7 75835a67d134 6 days ago 200MB

7. Log in to Docker Registry. Provide username and password for Docker Registry when prompted.

docker login

8. Tag the lunaclient build using the command below. Replace the <username> with your docker hub
username.

docker tag dpod-image <username>/dpod

9. Push the image to the Docker Hub Repository.

docker push <username>/dpod

Create a sample application in Marathon

By default, Marathon runs on port 8080. Open the browser to public IP address and port 8080 to access its GUI.

To create a sample Application in Marathon:

Docker Container: Integration Guide

Copyright © 2022 Thales Group
40

1. Click Create Application on the console.

2. Toggle to enable JSON Mode on the New Application Window.

3. Create sample application app.json to deploy. Add the following to the sample application:

{

 "id": "testapp",

 "cmd": null,

 "cpus": 1,

 "mem": 128,

 "disk": 1000,

 "instances": 1,

 "acceptedResourceRoles": [

 "*"

],

 "container": {

 "type": "DOCKER",

 "docker": {

 "forcePullImage": false,

 "image": "<username>/dpod",

 "parameters": [],

 "privileged": false

 }

 },

 "portDefinitions": [

 {

 "port": 10000,

 "name": "default",

 "protocol": "tcp"

 }

],

 "fetch": [

 {

 "uri": "file:///secrets/secrets.zip",

 "extract": true,

 "executable": false,

 "cache": false

 }

Docker Container: Integration Guide

Copyright © 2022 Thales Group
41

]

}

4. Click on Create Application. The Application is created under Apps in the console.

5. Wait for the application to go from Deploying to Running state.

NOTE: You can also deploy application on mesos slave by creating app.json on master and

use the HTTP API to deploy the app on Marathon ip-address by following command :

curl -X POST http://<ip address>:8080/v2/apps -d @app.json -H

"Content-type: application/json"

Switch to the Mesos console to see an Active task running.

Start interactive session with Docker Container

Luna Cloud HSM service is now deployed in Docker Container. You can open the terminal inside the container

to use the Luna Cloud HSM service. To start an interactive session with the running Docker Container:

1. Obtain the running container id.

docker ps –a

2. Start the interactive session of a running container using the container id.

docker attach <container id>

3. Copy the configuration file and certificates from /mnt/mesos/sandbox to directory /usr/local/luna.

4. Run lunacm and verify the connection to the partition.

bin/64/lunacm

./lunacm

5. Initialize the application partition to create the partition's Security Officer (SO) and set the initial password
and cloning domain.

lunacm:> partition init -label <par_label>

6. Log in as Partition SO. You can also use the shortcut po.

lunacm:> role login -name Partition SO

7. Initialize the Crypto Officer role and set the initial password. You can also use the shortcut co.

lunacm:> role init -name Crypto Officer

8. The Partition SO can create the Crypto Officer, but only the Crypto Officer can create the Crypto User. You
must log out to allow the Crypto Officer to log in with the newly-set password.

lunacm:> role logout

NOTE: Once the Crypto Officer logs in and changes the initial credential set by the Partition
SO, applications using the CO's challenge secret/password can perform cryptographic
operations in the partition. The Crypto Officer can create, modify, and delete crypto objects
within the partition, and use existing crypto objects (sign/verify). You can also create a

limited-capability role called Crypto User that can use the objects created by the Crypto
Officer, but cannot modify them. The separation of roles is important in some security

Docker Container: Integration Guide

Copyright © 2022 Thales Group
42

regimes and operational situations, and where you might be required to satisfy audit criteria

for industry or government oversight.

9. Log in as the Crypto Officer. You can also use the shortcut co.

lunacm:> role login -name Crypto Officer

NOTE: The password for the Crypto Officer role is valid only for the initial login. You must

change the initial password using the command role changepw during the initial login session
or a subsequent login. Failing to change the password will result in a CKR_PIN_EXPIRED

error when you perform role-dependent actions.

10. Change the initial password set by the Partition SO, if you have not done so already.

lunacm:> role changepw -name Crypto Officer

11. Create the Crypto User. You can also use the shortcut cu.

lunacm:> role init -name Crypto User

The Crypto User can now log in with the credentials provided by the Crypto Officer, and change the initial
password. The Crypto User can now use applications to perform cryptographic operations using keys and
objects created in the partition by the Crypto Officer.

12. Scale up or down for the number of pods you want using the following command:

oc scale dc mylunaapp --replicas=3

oc get pods

NAME READY STATUS RESTARTS AGE

mylunaapp-1-v6jh9 1/1 Running 0 5m

mylunaapp-1-qnt5r 1/1 Running 0 18s

mylunaapp-1-rtn4f 1/1 Running 0 18s

This completes the integration of Apache Mesos with Luna Cloud HSM. To verify the integration with the
Luna Cloud HSM service, run any application in the Pod that uses the HSM services.

See Using a Luna Cloud HSM service client inside Docker Container for Java Code Signing demonstration
inside of Apache Mesos Pod using Luna Cloud HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
43

APPENDIX A: Using Luna HSM inside Docker Container

This section demonstrates using Luna HSM and Luna Cloud HSM service inside Docker container. It

demonstrates the method for using the Java keytool utility to generate signing keys and certificates on Luna

HSM .It then demonstrates using the Java Code Signer to sign a JAR file inside of the Docker container. Install

Java Development Kit (JDK) on the Docker container or Pod.

Configure Java Keytool Utility to use Luna Cloud HSM service inside a Docker
Container

To configure Java Keytool Utility to use Luna Cloud HSM service inside a Docker Container:

1. Edit the Java Security Configuration file java.security located in the security directory under <JDK
Installation directory>/jre/lib/.

 Add the Luna Provider in java.security file as shown below:

 security.provider.1=sun.security.provider.Sun

 security.provider.2=sun.security.rsa.SunRsaSign

 security.provider.3=com.sun.net.ssl.internal.ssl.Provider

 security.provider.4=com.sun.crypto.provider.SunJCE

 security.provider.5=sun.security.jgss.SunProvider

 security.provider.6=com.sun.security.sasl.Provider

 security.provider.7=org.jcp.xml.dsig.internal.dom.XMLDSigRI

 security.provider.8=sun.security.smartcardio.SunPCSC

 security.provider.9=com.safenetinc.luna.provider.LunaProvider

 Save the changes in the java.security file.

2. Copy the LunaProvider.jar and libLunaAPI.so (UNIX) /LunaAPI.dll (Windows) from the <Luna Installation
Directory>/jsp/lib folder to JAVA extension folder under <JDK Installation directory>/jre/lib/ext.

3. Set the environment variables for JAVA_HOME and PATH.

export JAVA_HOME=<JDK Installation directory>

export PATH=$JAVA_HOME/bin:$PATH

4. Create a blank file named lunastore and add the following entry where <Partition Name> would be your
Luna HSM partition label:

tokenlabel:<Partition Name>

Save the file in current working directory.

Generate a key pair and sign a JAR file inside a Docker Container

To generate a key pair and sign a JAR file inside a Docker Container:

1. Generate a key pair using Java keytool utility in the keystore which will generate the key pair in Luna HSM.

keytool -genkeypair -alias lunakey -keyalg RSA -sigalg SHA256withRSA -keypass

userpin1 -keysize 2048 -keystore lunastore -storepass userpin1 -storetype luna

What is your first and last name?

Docker Container: Integration Guide

Copyright © 2022 Thales Group
44

[Unknown]: HSM

What is the name of your organizational unit?

[Unknown]: HSM

What is the name of your organization?

[Unknown]: Gemalto

What is the name of your City or Locality?

[Unknown]: MyCity

What is the name of your State or Province?

[Unknown]: MyState

What is the two-letter country code for this unit?

[Unknown]: IN

Is CN=HSM, OU=HSM, O=Gemalto, L=MyCity, ST=MyState, C=IN correct?

[no]: yes

A new key pair will be generated on registered Luna HSM partition.

NOTE: The command above used “userpin1” as storepass which is the partition Crypto

Officer Pin you set when initialized the CO role for the partition.

2. Verify that the private key is in the Luna HSM partition.

keytool -list -v -storetype luna -keystore lunastore

The system prompt to enter the keystore password and after providing the password it display the contents.

Enter keystore password:

 Keystore type: LUNA

 Keystore provider: LunaProvider

 Your keystore contains 1 entry

Alias name: lunakey

Creation date: Apr 16, 2018

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=HSM, OU=HSM, O=Gemalto, L=MyCity, ST=MyState, C=IN

Issuer: CN=HSM, OU=HSM, O=Gemalto, L=MyCity, ST=MyState, C=IN

Serial number: 1353bc67

Valid from: Mon Apr 16 12:01:45 PDT 2018 until: Sun Jul 15 12:01:45 PDT 2018

Docker Container: Integration Guide

Copyright © 2022 Thales Group
45

Certificate fingerprints:

 MD5: 90:D9:4A:25:DD:C4:9E:7F:55:60:3D:ED:D0:84:18:C1

 SHA1: 01:FF:94:6B:24:3C:FB:5F:05:F9:7F:AC:3A:3B:4D:AB:0D:9A:69:36

 SHA256:

FD:09:09:3A:71:1C:69:A1:24:5E:78:AB:BB:7C:0C:D9:81:02:64:D2:AE:7C:A1:00:91:21:E

A:41:9E:3D:FA:0D

Signature algorithm name: SHA256withRSA

Version: 3

3. Generate a certificate request from a key in the keystore. When prompted for password, provide the
keystore password.

keytool -certreq -alias lunakey -sigalg SHA256withRSA -file certreq_file -

storetype luna -keystore lunastore

 Enter keystore password:

 File certreq_file will be generated in the current directory.

NOTE: After creating your CSR, make sure that you keep track of your keystore file because
it contains your private key. In addition, you need the keystore file to install your Code

Signing Certificate.

4. Copy the certificate request file generated to host machine to submit it to your Certification Authority (CA) by
executing following command on host machine.

docker cp <container-id>:<certreq_file> .

 For Example:

docker cp d34fd7f4bc51:/usr/local/certreq_file .

5. The CA authenticates the request and returns a signed certificate or a certificate chain. Save the reply and
the root certificate of the CA. Copy both certificates to Docker container.

docker cp <root-ca-cert> <container-id>:<directory to place cert>

docker cp <signed-cert-chain> <container-id>:<directory to place cert>

For Example:

docker cp root.cer d34fd7f4bc51:/usr/local/

docker cp signing.p7b d34fd7f4bc51:/usr/local/

root.cer and signing.p7b are the CA Root Certificate and Signed Certificate Chain respectively.

6. Import the CA Root certificate and signed certificate or certificate chain in to the keystore.

To import the CA root certificate execute the following:

keytool -trustcacerts -importcert -alias rootca -file root.cer -keystore

lunastore -storetype luna

To import the signed certificate reply or certificate chain execute the following:

Docker Container: Integration Guide

Copyright © 2022 Thales Group
46

keytool -trustcacerts -importcert -alias lunakey -file signing.p7b -keystore

lunastore -storetype luna

The keystore contents can also be verified by executing lunacm command: partition contents.

7. Copy the JAR file from host machine to docker container's current working directory. Execute the following
command on host machine:

docker cp <jar-to-be-signed> <container-id>:<directory to place jar file>

 For Example:

docker cp sample.jar d34fd7f4bc51:/usr/local/

8. Use jarsigner toll provided with Java to sign the jar file and provide the keystore password when it prompt. A
message “jar signed” will display when the file is signed successfully.

jarsigner -keystore lunastore -storetype luna -signedjar <name-of-signedjar-

to-be-generated> <jar-to-be-signed> <alias-of-private-key> -tsa <time-

stamping-authority-url>

 For Example:

jarsigner -keystore lunastore -storetype luna -signedjar signedsample.jar

sample.jar lunakey -tsa http://timestamp.globalsign.com/scripts/timestamp.dll

Enter Passphrase for keystore:

jar signed.

9. Execute the following command to verify the signed jar. You will see a confirmation message at the end if
the jar is verified.

jarsigner -verify signedsample.jar -verbose –certs

s 565 Tue Apr 17 09:42:36 PDT 2018 META-INF/MANIFEST.MF

 [entry was signed on 4/16/18 9:12 PM]

 X.509, CN=Administrator, CN=Users, DC=CA, DC=com

 [certificate is valid from 4/16/18 12:02 PM to 4/16/19 12:02 PM]

 X.509, CN=my-CA, DC=CA, DC=com

 [certificate is valid from 4/5/18 10:25 AM to 4/5/23 10:35 AM]

 647 Tue Apr 17 09:42:36 PDT 2018 META-INF/LUNAKEY.SF

 5869 Tue Apr 17 09:42:36 PDT 2018 META-INF/LUNAKEY.RSA

 0 Thu Dec 02 10:41:40 PST 2010 META-INF/

m 506 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$1.class

m 533 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$2.class

m 1567 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer$3.class

m 3905 Mon May 21 00:09:04 PDT 2007 JSmoothPropertiesDisplayer.class

s = signature was verified

m = entry is listed in manifest

k = at least one certificate was found in keystore

i = at least one certificate was found in identity scope

Docker Container: Integration Guide

Copyright © 2022 Thales Group
47

 -Signed by "CN=Administrator, CN=Users, DC=CA, DC=com"

Digest algorithm: SHA256

Signature algorithm: SHA256withRSA, 2048-bit key

Timestamped by "CN=GlobalSign TSA for Standard - G2, O=GMO GlobalSign Pte Ltd,

C=SG" on Tue

Apr 17 04:12:52 UTC 2018

 Timestamp digest algorithm: SHA-256

 Timestamp signature algorithm: SHA1withRSA, 2048-bit key

jar verified.

This completes the demonstration of using the Java Keytool utility with a Luna HSM inside of a Docker
Container. The JAR is signed and verified in the Docker Container while the private key and certificate are
securely stored in the Luna HSM.

APPENDIX B: Using Luna Client from Host to Docker Container
We can run the Luna Client installed on the host to Docker container using volumes without packaging and

installing the Luna Client inside the Docker container. If you want to run Luna Client in multiple container without

packaging the Luna Client with each container, volume mount can be an efficient way to utilize Luna HSM in

container without installing the Luna Client inside the container.

1. Ensure that Luna client is installed and configured on the host system on default location.

2. Create the yaml file docker-compose.yaml and ensure that the file has the following contents:

Note: This is just an example to run the NTL service in a container without installing the Luna

Client in container. You can use this as a reference and use the Luna Client mounted in

container with the actual application requires Luna HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
48

version: '3'

services:

 LunaInDocker:

 container_name: luna_container

 image: centos:latest

 volumes:

 - /etc/Chrystoki.conf:/etc/Chrystoki.conf

 - /usr/safenet/lunaclient:/usr/safenet/lunaclient

 environment:

 - ChrystokiConfigurationPath=/etc

 - LC_ALL=C

 tty: true

3. Create and start the container using docker-compose up command.

docker-compose up &

4. Connect to the container and run the lunacm to run the NTL connection in the container.

docker exec -it luna_container bash

Docker Container: Integration Guide

Copyright © 2022 Thales Group
49

Refer to Using the Luna HSM inside Docker Container for Java Code Signing demonstration inside of a
Docker using Luna Network HSM.

APPENDIX C: Using Luna Client from Host to Kubernetes Pods
We can run the Luna Client installed on the Host to pods using volumes without packaging and installing the

Luna Client inside the pods. If you want to run Luna Client in multiple pods without packaging the Luna Client

with each pod, volume mount can be an efficient way to utilize Luna HSM in pods without installing the Luna

Client inside the pods.

1. Ensure that Luna Client is installed and configured on the Host System on default location.

2. Create the yaml file lunaclient.yaml and ensure that the file has the following information:

Note: This is just an example to run the NTL service in a Kubernetes pod without installing

the Luna Client inside the pod. You can use this as a reference and use the Luna Client

mounted in pod with the actual application requires Luna HSM.

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-lunaclient

spec:

 containers:

 - name: pod-with-lunaclient

 image: centos:latest

Docker Container: Integration Guide

Copyright © 2022 Thales Group
50

 # Just spin & wait forever

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 volumeMounts:

 - name: lunaclient-config

 mountPath: /etc/Chrystoki.conf

 readOnly: true

 - name: lunaclient

 mountPath: /usr/safenet/lunaclient

 env:

 - name: LC_ALL

 value: C

 volumes:

 - name: lunaclient-config

 hostPath:

 path: /etc/Chrystoki.conf

 type: File

 - name: lunaclient

 hostPath:

 path: /usr/safenet/lunaclient

 type: Directory

3. Create a Pod deployment using the kubectl command and yaml file created above.

kubectl create -f lunaclient.yaml

This may take a few minutes.

4. Verify the deployment status.

kubectl get pods

Docker Container: Integration Guide

Copyright © 2022 Thales Group
51

5. When STATUS is RUNNING, you can connect the Pod to verify the NTLS connection. Execute the following
command on the Master or any Node connected to the Master.

kubectl exec -it pod-with-lunaclient -- /bin/bash

6. Verify that the Pod can access the HSM partition.

See Using the Luna HSM inside Docker Container for Java Code Signing demonstration inside of a
container using Luna Network HSM.

Docker Container: Integration Guide

Copyright © 2022 Thales Group
52

Contacting Customer Support
If you encounter a problem while installing, registering, or operating this product, contact your supplier or

Thales Customer Support. Thales Customer Support operates 24 hours a day, 7 days a week. Your level

of access to this service is governed by the support plan arrangements made between Thales and your

organization. Please consult this support plan for further information about your entitlements, including the

hours when telephone support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more.

You can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a

new account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed

on the support portal.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/

