

Ethereum Blockchain: Integration Guide
THALES LUNA HSM AND DPOD LUNA CLOUD HSM

Copyright © 2022 Thales Group
2

Document Information

Document Part Number 007-000189-001

Revision B

Release Date 7 December 2022

Trademarks, Copyrights, and Third-Party Software

Copyright © 2022 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
3

CONTENTS

Overview .. 4
Understanding Ethereum Blockchain Network ... 4
Certified Platforms ... 5

Prerequisites .. 5
Configure Luna HSM ... 5
Configure Luna Cloud HSM Service .. 6
Set up Go-Ethereum ... 7

Configuring Luna HSM to use with Ethereum Blockchain .. 7
Configure Luna Network HSM for Ethereum Blockchain .. 7
Configure Luna Cloud HSM for Ethereum Blockchain .. 10

Integrating Ethereum Blockchain with Luna HSM .. 11
Integrate Ethereum with Luna HSM using BIP32 keys ... 12
Integrate Ethereum with Luna HSM using ECDSA keys ... 17

Contacting Customer Support ... 25
Customer Support Portal ... 25
Telephone Support .. 25

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
4

Overview

This guide demonstrates using a Luna HSM or Luna Cloud HSM in Ethereum Blockchain to protect the

Ethereum account private keys.

In Ethereum, an account is the public/private key pair file that serves as the identity on the Blockchain. The

HSM wallet allows you to generate and secure ECDSA/BIP32 key pairs on Luna HSM, following which you can

use Luna HSM to sign transactions. The HSM wallet uses a PKCS#11 API to communicate with Luna HSM.

Each PKCS#11 partition corresponds to a different HSM wallet.

The benefits of using Luna HSMs to generate the private keys for Ethereum Blockchain Accounts include:

 Secure generation, storage and protection of the encryption keys on FIPS 140-2 level 3 validated hardware

 Full life cycle management of the keys

 Access to secure audit trail

NOTE: Access to secure audit trail is available only for Luna Network HSM.

 Using cloud services with confidence.

 Significant performance improvements by off-loading cryptographic operations from application servers.

Understanding Ethereum Blockchain Network

Ethereum is an open-source, public, blockchain-based distributed computing platform and operating system

featuring smart contract (scripting) functionality. Ether is the fundamental cryptocurrency for operation of

Ethereum, which thereby provides a public distributed ledger for transactions. It is used to pay for gas, a unit of

computation used in transactions and other state transitions. Ether can be transferred between accounts and

used to compensate participant mining nodes for computations performed.

Go Ethereum is the official golang implementation of Ethereum protocol. Geth is the main Ethereum CLI client.

It is the entry point into the Ethereum network (main, test or private net), capable of running as a full node

(default), archive node (retaining all historical state), or a light node (retrieving data live). It can be used by other

processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, Web

Socket and/or IPC transports.

The proof of work (PoW) algorithm used in Ethereum is Ethash (a modified version of the Dagger-Hashimoto

algorithm). Ethash PoW is memory hard, making it ASIC resistant. Memory hardness is achieved with a proof of

work algorithm that requires choosing subsets of a fixed resource dependent on the nonce and block header.

This resource (a few gigabyte size data) is called a DAG.

Consult Go-Ethereum documentation or more information on its implementation and working.

https://geth.ethereum.org/docs/

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
5

Certified Platforms

This integration is certified on the following platforms:

 Certified platforms on Luna HSM

 Certified platforms on Luna Cloud HSM

Certified platforms on Luna HSM

HSM Type Platforms Tested

Luna HSM RHEL

Ubuntu

Luna HSM: Luna HSM appliances are purposefully designed to provide a balance of security, high

performance, and usability that makes them an ideal choice for enterprise, financial, and government

organizations. Luna HSMs physically and logically secure cryptographic keys and accelerate cryptographic

processing. The Luna HSM on premise offerings include the Luna Network HSM, Luna PCIe HSM, and Luna

USB HSMs. Luna HSMs are also available for access as an offering from cloud service providers such as IBM

Cloud HSM and AWS CloudHSM Classic.

Certified platforms on Luna Cloud HSM

HSM Type Platforms Tested

Luna Cloud HSM RHEL

Ubuntu

Luna Cloud HSM: Luna Cloud HSM services provide on-demand, cloud-based storage, management, and

generation of cryptographic keys through a simple graphical user interface. With Luna Cloud HSM, security is

simple, cost effective, and easy to manage because there is no hardware to buy, deploy, and maintain. As an

Application Owner, you click and deploy services, generate usage reports, and maintain only those services

that you need.

Prerequisites
Before you proceed with the any of the integrations described in this document, complete the following tasks:

Configure Luna HSM

Configure Luna Cloud HSM Service

Set up Go-Ethereum

Configure Luna HSM

To configure Luna HSM with Go-Ethereum:

1. Verify that the HSM is set up, initialized, provisioned, and ready for deployment.

2. Create a partition on the HSM that will be later used as HSM wallet.

3. If using a Luna Network HSM, register a client for the system and assign the client to the partition to create
an NTLS connection. Initialize the Crypto Officer and Crypto User roles for the registered partition.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
6

NOTE: Refer to Configuring Luna HSM for Ethereum Blockchain for detailed steps on

creating NTLS connection, initializing the partitions, and assigning various user roles.

Set up Luna HSM High-Availability Group

Refer to the Luna HSM documentation for HA steps and details regarding configuring and setting up two or

more HSM boxes on host systems. You must enable the HAOnly setting in HA for failover to work so that if the

primary goes down due to any reason, all calls get automatically routed to the secondary until the primary

recovers and starts up.

Set up Luna HSM in FIPS Mode

NOTE: This setting is not required for Luna HSM Universal Client. This setting is applicable

only for Luna HSM Client 7.x.

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux

primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-

compliant HSM. If you are using Luna HSM in FIPS mode, you have to make the following change in the

configuration file:

Misc = {

RSAKeyGenMechRemap = 1;

}

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM is in

FIPS mode.

Configure Luna Cloud HSM Service

If you are using Luna Cloud HSM, you have the following configuration options:

 Standalone Cloud HSM service using minimum client package

 Standalone Cloud HSM service using full Luna client package

 Luna HSM and Luna Cloud HSM service in hybrid mode

NOTE: Refer to Configuring Luna Cloud HSM for Ethereum Blockchain for detailed steps on

provisioning Luna Cloud HSM service, initializing the partition, and assigning various user
role.

NOTE: Follow the Luna Cloud HSM documentation for detailed steps for creating service,
client, and initializing various user roles.

NOTE: Luna Client v10.x or higher is required for configuring Luna HSM device and Luna

Cloud HSM service in hybrid mode.

Luna Cloud HSM Service in FIPS mode

Luna Cloud HSM service operates in both FIPS and non-FIPS mode. If your organization requires non-FIPS

algorithms for your operations, ensure you enable the Allow non-FIPS approved algorithms check box when

configuring your Cloud HSM service. The FIPS mode is enabled by default. Refer to the Mechanism List in the

SDK Reference Guide for more information about available FIPS and non-FIPS algorithms.

https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm
https://thalesdocs.com/dpod/index.html
https://thalesdocs.com/dpod/services/luna_cloud_hsm/extern/client_guides/Content/sdk/DPoD_Preface.htm

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
7

Set up Go-Ethereum

Complete the following processes to install and configure Go-Ethereum on a Linux Operating System.

Install prerequisite libraries

Install the following components on the Linux operating system:

sudo yum install git python3-pip libtool-ltdl-devel (RHEL)

sudo apt-get install git alien python3-pip libltdl-dev (Ubuntu)

Install and setting up Golang

Ethereum Blockchain uses the Go programming language for many of its components. Install the golang using

the steps provided by Golang official site.

Installation steps: https://golang.org/doc/install

Download binaries: https://golang.org/dl/

Install and set up Docker and Docker-compose

Docker and Docker-compose need to be installed on the platform on which you are operating.

Follow the instructions in the following URL to install the docker:

Installation steps: https://docs.docker.com/engine/install/

Install the docker-compose:

sudo pip3 install docker-compose

NOTE: It is always recommended to use the latest version available.

Install and configure GO-Ethereum

Installation and configuration of Go-Ethereum for Luna HSM is provided in the respective section of this

integration guide.

Configuring Luna HSM to use with Ethereum Blockchain
Luna HSM provides strong protection of secure assets, including keys, and should be considered a best

practice when building systems based on Ethereum Blockchain. This section provides instructions for

configuring Luna HSM for Go-Ethereum. Follow the instructions provided below as per the HSM you are using:

 Configure Luna Network HSM for Ethereum Blockchain

 Configure Luna Cloud HSM for Ethereum Blockchain

Configure Luna Network HSM for Ethereum Blockchain

To configure Luna HSM ensure the following:

1. Ensure that the HSM is setup, initialized, provisioned, and ready for deployment.

2. Create two HSM partitions, for example TPA01 and TPA02, which will be used by geth1 and geth2 node of
Ethereum Blockchain.

https://golang.org/doc/install
https://golang.org/dl/
https://docs.docker.com/engine/install/

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
8

NOTE: You can use same HSM or different HSM for both partitions. Partition name can be

any user defined name.

3. Create the following directories on the client machine:

mkdir -p /usr/local/lunaclient

mkdir -p /etc/geth/lunaconf1

mkdir -p /etc/geth/lunaconf2

4. Extract the Luna Client minimal package installer in folder /usr/local/lunaclient.

tar -C /usr/local/lunaclient --strip 1 -xvf LunaClient-Minimal-

<release_version>.x86_64.tar

5. Set the ChrystokiConfigurationPath variable to point to the directory /etc/geth/lunaconf1.

export ChrystokiConfigurationPath=/etc/geth/lunaconf1

6. Copy the Chrystoki-template.conf to the /etc/geth/lunaconf1 directory.

cp /usr/local/lunaclient/Chrystoki-template.conf

/etc/geth/lunaconf1/Chrystoki.conf

7. Modify the Chrystoki2 section of /etc/geth/lunaconf1/Chrystoki.conf to:

Chrystoki2 = {

 LibUNIX = /usr/local/lunaclient/libs/64/libCryptoki2.so;

 LibUNIX64 = /usr/local/lunaclient/libs/64/libCryptoki2_64.so;

}

8. Modify the LunaSA Client section of /etc/geth/lunaconf1/Chrystoki.conf and update the following:

NOTE: Do not update/delete any other flags of this section.

LunaSA Client = {

 SSLConfigFile = /usr/local/lunaclient/openssl.cnf;

 ClientPrivKeyFile = /etc/geth/lunaconf1/;

 ClientCertFile = /etc/geth/lunaconf1/;

 ServerCAFile = /etc/geth/lunaconf1/CAFile.pem;

}

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
9

9. Modify the Secure Trusted Channel section of /etc/geth/lunaconf1/Chrystoki.conf file as follows:

NOTE: Secure Trusted Channel section of /etc/geth/lunaconf1/Chrystoki.conf can be

completely removed if STC is not enabled.

Secure Trusted Channel = {

 ClientTokenLib = /usr/local/lunaclient/libs/64/libSoftToken.so;

 SoftTokenDir = /usr/local/lunaclient/stc/token;

 ClientIdentitiesDir = /usr/local/lunaclient/client_identities;

 PartitionIdentitiesDir = /usr/local/lunaclient/partition_identities;

}

10. Copy the server certificate from Luna HSM to current directory.

scp admin@<HSM-IP>:server.pem .

11. Add the Luna HSM server certificate on client.

/usr/local/lunaclient/bin/64/vtl addServer -n <HSM-IP> -c server.pem

12. Create the client certificate.

/usr/local/lunaclient/bin/64/vtl createCert -n geth1

13. Transfer the client certificate to the Luna HSM.

scp /etc/geth/lunaconf1/geth1.pem admin@<HSM-IP>:

14. Log in to Luna HSM and register the client and assign TPA01 partition to the client.

15. Use the lunacm utility from the client machine to initialize the partition and Crypto Officer role.

16. For PED-authenticated HSM, enable partition policies 22 and 23 to allow activation and auto-activation.

NOTE: Refer to Luna HSM documentation for detailed steps on creating NTLS connection,

initializing the partitions, and assigning various user roles.

https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
10

17. Repeat steps 5 to 16 for HSM/partition2 replacing lunaconf1, geth1, and TPA01 with lunaconf2, geth2, and
TPA02, respectively, at each step.

NOTE: Replace TPA01 and TPA02 with the actual partition label.

Configure Luna Cloud HSM for Ethereum Blockchain

To configure Luna Cloud HSM:

1. Create two Luna Cloud HSM Services in Data Protection on Demand platform.

NOTE: Consult Data Protection on Demand Application Owner Quick Start Guide for more

information about provisioning the HSM on Demand service and initializing the service client.

2. For each service, create a client and download client zip files to the host system.

3. Make the following two directories on client machine:

mkdir -p /etc/geth/lunaconf1

mkdir -p /etc/geth/lunaconf2

4. Unzip the downloaded client zip files in to directories lunaconf1 and lunaconf2, respectively.

unzip /home/setup-<client1>.zip -d /etc/geth/lunaconf1

unzip /home/setup-<client2>.zip -d /etc/geth/lunaconf2

5. Go to the lunaconf1 and lunaconf2 directories and extract cvclient-min.tar file in both the directories.

cd /etc/geth/lunaconf1

tar -xvf cvclient-min.tar

cd /etc/geth/lunaconf2

tar -xvf cvclient-min.tar

Note: Follow the instructions provided in the DPOD Application Owner Quick Start Guide and

initialize both the partitions, Security Officer and Crypto Officer.

https://thalesdocs.com/dpod/services/luna_cloud_hsm/service/quick_start/index.html
https://thalesdocs.com/dpod/services/luna_cloud_hsm/service/quick_start/index.html

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
11

6. Verify that each partition is visible from the client via the lunacm utility after initializing the partition and
required roles.

Integrating Ethereum Blockchain with Luna HSM
When Go-Ethereum is integrated with Luna HSM, it generates either BIP32 or ECDSA keys for signing. Luna

HSM protects the account signing key and only an authenticated user account can access the signing keys to

perform signed transaction in Blockchain network.

This section describes how to use Luna HSM to generate account signing keys and sign transactions using

Luna HSM generated keys.

 Integrate Ethereum with Luna HSM using BIP32 keys

 Integrate Ethereum with Luna HSM using ECDSA keys

Note: Luna HSM and Luna Cloud HSM supports BIP32 mechanism in Non-FIPS mode only.

If your HSM is in FIPS mode you can only able to use ECDSA keys.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
12

Integrate Ethereum with Luna HSM using BIP32 keys

Luna HSM or Luna Cloud HSM must be in Non-FIPS mode to use BIP32 mechanism as this mechanism is not

supported in FIPS mode.

To integrate Ethereum with Luna HSM using BIP32 keys:

1. Ensure that the go executable is in the PATH.

export PATH=/usr/local/go/bin:$PATH

2. Clone the Go-Ethereum git repository on the client.

git clone https://github.com/ThalesGroup/go-ethereum

3. Change directory to the cloned repo.

cd go-ethereum

4. Build the Geth binary.

make geth

5. Build a docker image for a Geth node.

cd example

make build

6. Ensure that Docker images are built successfully.

docker images

7. Create a Geth config file in go-ethereum/example directory.

../build/bin/geth --networkid 8000 dumpconfig > config.toml

For Luna Cloud HSM:

Create two geth config files in go-ethereum/example directory as we have two different service client.

../build/bin/geth --networkid 8000 dumpconfig > config1.toml

../build/bin/geth --networkid 8000 dumpconfig > config2.toml

https://github.com/ThalesGroup/go-ethereum

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
13

8. Add the following flags to the [Node] section in config.toml:

NoPKCS11BIP32 = false

PKCS11Lib = "/usr/local/lunaclient/libs/64/libCryptoki2.so"

For Luna Cloud HSM:

In config1.toml:

NoPKCS11BIP32 = false

PKCS11Lib = "/etc/geth/lunaconf1/libs/64/libCryptoki2.so"

In config2.toml:

NoPKCS11BIP32 = false

PKCS11Lib = "/etc/geth/lunaconf2/libs/64/libCryptoki2.so"

9. Create two ethash directories for the DAG in go-ethereum/example directory.

mkdir ethash1

mkdir ethash2

10. Initialize the data directories:

make clean

make init

11. If using Luna Cloud HSM, update the docker-compose.yaml under go-ethereum/example directory. Make
the following changes:

Note: If using Luna HSM, Skip this step as no update is required for Luna HSM. These

modification in docker-compose.yaml is required only for Luna Cloud HSM.

a. Remove the following line from [volumes] section of geth1.

- /usr/local/lunaclient:/usr/local/lunaclient

b. Make the following change in the volume section of geth1:

Update:

./config.toml:/etc/geth/config.toml

To

./config1.toml:/etc/geth/config.toml

c. Remove the following line from [volumes] section of geth2.

- /usr/local/lunaclient:/usr/local/lunaclient

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
14

d. Make the following change in the volume section of geth2:

Update:

./config.toml:/etc/geth/config.toml

To

./config2.toml:/etc/geth/config.toml

After making these changes, ensure that docker-compose.yaml looks like the following:

12. Create two docker containers (geth1 and geth2) running Geth image.

docker-compose up

13. Open a new terminal and attach to node 1.

./console.sh 1

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
15

14. Initially the wallet is closed. You can check the closed status by running following command in console 1.

personal.listWallets

15. Open the wallet in console 1. Provide the partition password when prompted.

personal.openWallet("hsm://<partition1>")

When you open the wallet for the first time, it will generate master seed and derive a master key pair. A
child key pair will be derived for path “m/44'/60'/0'/0/0” by the Self-Derive background task. Self-derivation
will run in the background automatically deriving new keys starting at path "m/44'/60'/0'/0/0". To see account
you can run the personal.listWallets command.

The background thread monitors the block chain to see whether the last key derived is part of a transaction
and added to a block. If that is the case, the background thread will derive the next account. For example,
"m/44'/60'/0'/1/0" when listing accounts, as illustrated in the next step.

16. Derive an account:

personal.deriveAccount("hsm://<partition1>", "m/44'/60'/0'/1/0", true)

Here, m/44'/60'/0'/1/0 refers to the path of the child key and true means to keep track of the account for
signing later on.

NOTE: The path “m/44'/60'/0'/1/0”, defines the indexes to be used when deriving child keys in
a BIP32-HD Wallet. You can also choose other index values. For more information follow this

link https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

17. Set the coin base to the new derived account.

miner.setEtherbase("<derive account address>")

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
16

Where derive account is address obtained from the previous step. For Example:

miner.setEtherbase("0xa05070cc2ea2cd364c85fb85ab32e7f60dfcbb06")

18. Fund the account by starting the miner:

miner.start()

19. Wait for "Generating DAG in progress" to get completed. The activity can be seen in the "docker-compose
up" terminal. This can take some time to complete. Wait for some block to be mined and then proceed to
next step.

20. Check the balance for drive account address.

eth.getBalance("<derive account address>")

For example :

eth.getBalance("0xa05070cc2ea2cd364c85fb85ab32e7f60dfcbb06")

You should be able to see some ether in this account.

21. Stop the miner after some blocks have been mined.

miner.stop()

22. Derive another account:

personal.deriveAccount("hsm://<partition1>", "m/44'/60'/0'/1/1", true)

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
17

23. Send funds from the first account to the second account:

eth.sendTransaction({from:sender, to:receiver, value: amount})

For example:

eth.sendTransaction({from:"0xa05070cc2ea2cd364c85fb85ab32e7f60dfcbb06",

to:"0x3f1947217ee231e02d203a81ebeee73db3248435", value: web3.toWei(0.5,

"ether")})

24. Mine some more blocks:

miner.start()

Wait for some blocks to be mined in "docker-compose up" terminal and then stop mining.

miner.stop()

25. Check the balance for receiver "hsm://geth1/m/44'/60'/0'/1/1" and it must be 500000000000000000.

eth.getBalance("0x3f1947217ee231e02d203a81ebeee73db3248435")

This completes the integration of Ethereum Blockchain with Luna HSM using BIP32 keys. If you close the HSM

wallet, you will not able to perform any transaction till the wallet is opened again and account keys from Luna

HSM are available for signing the transaction.

Integrate Ethereum with Luna HSM using ECDSA keys

1. Ensure that the go executable is in the PATH.

export PATH=/usr/local/go/bin:$PATH

2. Clone the Go-Ethereum git repository on the client

git clone https://github.com/ThalesGroup/go-ethereum

3. Change directory to the cloned repo.

 # cd go-ethereum

4. Build the Geth binary.

 # make geth

5. Build a Docker image for a Geth node.

cd example

make build

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
18

6. Ensure that Docker images are built successfully.

docker images

7. Create a Geth config file in the go-ethereum/example directory.

cd /opt/go-ethereum/example

../build/bin/geth --networkid 8000 dumpconfig > config.toml

For Luna Cloud HSM:

Create two geth config files in go-ethereum/example directory as we have two different service client.

../build/bin/geth --networkid 8000 dumpconfig > config1.toml

../build/bin/geth --networkid 8000 dumpconfig > config2.toml

8. Add the following configuration to the [Node] section in config.toml.

NoPKCS11BIP32 = true

PKCS11Lib = "/usr/local/lunaclient/libs/64/libCryptoki2.so"

For Luna Cloud HSM:

In config1.toml:

NoPKCS11BIP32 = true

PKCS11Lib = "/etc/geth/lunaconf1/libs/64/libCryptoki2.so"

In config2.toml:

NoPKCS11BIP32 = true

PKCS11Lib = "/etc/geth/lunaconf2/libs/64/libCryptoki2.so"

9. Create two ethash directories for the DAG in go-ethereum/example directory.

mkdir ethash1

mkdir ethash2

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
19

10. Initialize the data directories:

make clean

make init

11. If you are using Luna Cloud HSM, update the docker-compose.yaml under go-ethereum/example directory.
Make the following changes:

Note: If using Luna HSM, Skip this step as no update is required for Luna HSM. These

modification in docker-compose.yaml is required only for Luna Cloud HSM.

a. Remove the following line from [volumes] section of geth1.

- /usr/local/lunaclient:/usr/local/lunaclient

b. Make the following change in the volume section of geth1:

Update:

./config.toml:/etc/geth/config.toml

To

./config1.toml:/etc/geth/config.toml

c. Remove the following line from [volumes] section of geth2.

- /usr/local/lunaclient:/usr/local/lunaclient

d. Make the following change in the volume section of geth2:

Update:

./config.toml:/etc/geth/config.toml

To

./config2.toml:/etc/geth/config.toml

Ensure that the docker-compose.yaml file contains the following details:

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
20

12. Create two Docker containers (geth1 and geth2) running geth image.

docker-compose up

13. In two separate terminals, attach to geth1 and geth2 nodes.

./console.sh <node>

In terminal 1:

./console.sh 1

In terminal 2:

./console.sh 2

14. In both consoles (geth1, geth2), open the wallet. Provide the partition password when prompted.

In terminal 1:

personal.openWallet("hsm://<partition1>")

In terminal 2:

personal.openWallet("hsm://<partition2>")

15. Check the status of wallet in both terminals.

personal.listWallets

Terminal 1:

Terminal 2:

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
21

16. In both consoles (geth1, geth2), create an account.

In terminal 1:

personal.newHsmAccount("hsm://<partition1>")

In terminal 2:

personal.newHsmAccount("hsm://<partition2>")

NOTE: Accounts can also be created outside of the geth node:

 geth --config config.toml account newhsm <partition>

This will generate an ECDSA key pair on Luna HSM partition.

17. Find the node address of the geth2 account in terminal2 (geth2 console).

admin.nodeInfo

The output displays the enode field containing node address.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
22

18. Add geth2 as peer in terminal1(geth1 console) by mentioning the enode address obtained in previous step
through replacing the IP of geth2 container to 10.8.0.4.

admin.addPeer("<geth2-enode-address>")

For example:

#admin.addPeer("enode://b5f7e23f47277e34c8d7cefe066473e0b522eecce5407f2a5f13a6c

794ae9964bf0dc5805a0cd4a8d93abd390d1535c1a7bea9e914f0c63f6c57e715aaf84910@10.8.

0.4:30304")

19. Confirm that each node assures the other as peers by running the following command in each terminal.

admin.peers

Once both the nodes have been added as peers, you can run miner.start() to start mining . You need at

least one miner to mine for any transactions to be included on the blockchain. Initially, the blockchain will

build the Directed Acyclic Graph (DAG) which may take a few minutes. It will display Generating DAG in

progress. After mining commences, you can see the mined test ether in the account.

20. Start the miner in terminal1 (geth1 console).

miner.start()

Wait for the completion of DAG generation process. The activity can be seen in the "docker-compose up"

terminal. This can take some time to complete.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
23

You will notice several blocks in the “docker-compose up” terminal similar to the following after the DAG

generation process is completed.

21. Stop the miner in terminal1 (geth1 console) after the DAG generation process gets completed and after
some blocks have been mined,.

miner.stop()

22. Find the geth1 account address by executing the following command in terminal1 (geth1 console).

personal.listAccounts

23. Get the balance of the geth1 account in either terminal 1 or terminal 2. The account will show some ether in
when queried.

eth.getBalance("<geth1-account-address>")

24. Perform a transaction from the geth1 account to the geth2 account. Find the geth1 account address by
executing personal.listAccounts in terminal1 (geth1 console) and use it as sender account address.

Find the geth2 account address by executing personal.listAccounts in terminal2 (geth2 console) and

use it as receiver account address to transfer ethers.

In terminal 1:

eth.sendTransaction({from:sender, to:receiver, value: amount})

For example:

eth.sendTransaction({from: "0x8babb7fbb843d3300faf22ef61db4520982ae3e0", to:

"0x13fb9c7967edf15759be769f143de81187b5cbef", value: web3.toWei(0.5, "ether")})

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
24

25. You can view the transaction by executing the following command on terminal 1:

eth.pendingTransactions

26. Mine some more blocks in terminal 1.

miner.start()

27. Wait for some blocks to be mined in "docker-compose up" terminal and then stop mining.

miner.stop()

28. In any terminal, observe the balance of the geth2 account.

eth.getBalance("<geth2-account-address>")

Observe the balance transferred in the transaction performed. As per the transaction, the balance in geth2

account should be: 500000000000000000

29. Close the wallets.

In terminal 1:

personal.closeWallet("hsm://<partition1>")

In terminal 2:

personal.closeWallet("hsm://<partition2>")

After closing the wallet, you cannot perform any transaction as the signing keys from HSM is not available.

This completes the integration of Go-Ethereum Blockchain with Luna HSM. It generates the ECDSA signing

keys in the HSM partition that are then used by the Ethereum accounts for signing blockchain transactions.

Ethereum Blockchain: Integration Guide

Copyright © 2022 Thales Group
25

Contacting Customer Support
If you encounter a problem while installing, registering, or operating this product, refer to the

documentation. If you cannot resolve the issue, contact your supplier or Thales Customer Support. Thales

Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is

governed by the support plan arrangements made between Thales and your organization. Please consult

this support plan for further information about your entitlements, including the hours when telephone

support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more.

You can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a

new account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed

on the support portal.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/

