

THALES GROUP LIMITED DISTRIBUTION - SCOPE

OpenSSL: Integration Guide
THALES LUNA HSM AND DPOD LUNA CLOUD HSM

Copyright © 2023 Thales Group
2

Document Information

Document Part Number 007-012068-001

Revision V

Release Date 1 December 2023

Trademarks, Copyrights, and Third-Party Software

Copyright © 2023 Thales Group. All rights reserved. Thales and the Thales logo are trademarks and

service marks of Thales Group and/or its subsidiaries and are registered in certain countries. All other

trademarks and service marks, whether registered or not in specific countries, are the property of their

respective owners.

Contents

Copyright © 2023 Thales Group
3

CONTENTS

sOverview .. 4
Certified Platforms .. 4

Certified platforms on Luna HSM .. 4
Certified platforms on Luna Cloud HSM ... 5

Prerequisites .. 5
Configure Luna HSM .. 5
Configure Luna Cloud HSM service ... 6
Set up OpenSSL toolkit .. 7

Integrating Luna HSM with OpenSSL using Gem Engine ... 7
Integrate OpenSSL with Luna HSM on UNIX ... 7
Integrate OpenSSL with Luna HSM on Windows ... 17

Appendix-A ... 25
Troubleshooting ... 27
Contacting Customer Support .. 30

Customer Support Portal .. 30
Telephone Support ... 30

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
4

Overview
This document contains steps to install, configure, and integrate OpenSSL with a Luna HSM or Luna Cloud

HSM service. OpenSSL is an open-source project that consists of a cryptographic library and an SSL/TLS

toolkit. OpenSSL provides command-line tools for cryptographic operations including symmetric encryption,

public-key encryption, and digital signing hash.

Luna HSM is used to securely store the OpenSSL cryptographic keys. When OpenSSL is integrated with Luna

HSM, it leverages the Gem Engine to consume HSM resources. The benefits of using Luna HSM to generate

the cryptographic keys for OpenSSL are:

 Secure generation, storage, and protection of the cryptographic keys on FIPS 140-2 level 3 validated

hardware.

 Full life cycle management of the keys.

 Significant performance improvements by off-loading cryptographic operations from application servers.

 HSM audit trail*

 Using cloud services with confidence.

* Luna Cloud HSM services do not have access to the secure audit trail.

Certified Platforms
This integration is certified on the following platforms:

Certified platforms on Luna HSM

Certified platforms on Luna Cloud HSM

Certified platforms on Luna HSM

HSM Type OpenSSL Toolkit Platforms

Luna HSM GemEngine 1.6 Windows Server 2022
RHEL 9
RHEL 8

Luna HSM GemEngine 1.5 Windows Server 2019
RHEL 9
RHEL 8

Luna HSM GemEngine 1.5 Windows Server 2019
RHEL 8

Luna HSM GemEngine 1.2
 GemEngine 1.3

 Windows Server 2019
 Windows Server 2016
 Windows Server 2012 R2
 RHEL 7

NOTE: This integration is tested with Luna Clients in HA and FIPS Mode.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
5

Luna HSM: Luna HSM appliances are purposefully designed to provide a balance of security, high
performance, and usability that makes them an ideal choice for enterprise, financial, and government
organizations. Luna HSM secures the cryptographic keys physically and logically and accelerate cryptographic
processing. Luna HSM on premise offerings include the Luna Network HSM, Luna PCIe HSM, and Luna USB
HSMs. Luna HSM is also available for access as an offering from cloud service providers such as IBM cloud
HSM and AWS cloud HSM classic.

Certified platforms on Luna Cloud HSM

HSM Type OpenSSL Toolkit Platforms

Luna Cloud HSM GemEngine 1.6 Windows Server 2022
RHEL 8

Luna Cloud HSM GemEngine 1.5 Windows Server 2019
RHEL 8

Luna Cloud HSM GemEngine 1.3 Windows Server 2019
 Windows Server 2016
 RHEL 7

Luna Cloud HSM: Luna Cloud HSM provides on-demand HSM and Key Management services through a

simple graphical user interface. With Luna Cloud HSM, security is simple, cost effective and easy to manage

because there is no hardware to buy, deploy and maintain. As an Application Owner, you click and deploy

services, generate usage reports, and maintain just the services you need.

Prerequisites
Before you proceed with the integration, complete the following tasks:

Configure Luna HSM

Configure Luna HSM service

Set up OpenSSL toolkit

Configure Luna HSM

If you are using Luna HSM:

1. Verify that the HSM is set up, initialized, provisioned, and ready for deployment. Refer to the Luna HSM
documentation for more information.

2. Create a partition on the HSM that will be later used by OpenSSL.

3. If you are using a Luna Network HSM, register a client for the system and assign the client to the partition to
create an NTLS connection. Initialize the Crypto Officer and Crypto User roles for the registered partition.

4. Ensure that each partition is successfully registered and configured. The command to see the registered
partitions is:

/usr/safenet/lunaclient/bin/lunacm

lunacm (64-bit) v10.5.1-174. Copyright (c) 2022 Thales Group. All rights

reserved.

Available HSMs:

https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
6

Slot Id -> 0

Label -> TPA01

Serial Number -> 1312109862206

Model -> LunaSA 7.7.1

Firmware Version -> 7.7.1

Bootloader Version -> 1.1.2

Configuration -> Luna User Partition With SO (PW) Key Export With

Cloning Mode

Slot Description -> Net Token Slot

FM HW Status -> Non-FM

5. For PED-authenticated HSM, enable partition policies 22 and 23 to allow activation and auto-activation.

NOTE: Refer to Luna HSM documentation for detailed steps about creating NTLS
connection, initializing the partitions, and assigning various user roles.

Set up Luna HSM High-Availability

Refer to the Luna HSM documentation for HA steps and details regarding configuring and setting up two or

more HSM boxes on host systems. You must enable the HAOnly setting in HA for failover to work so that if the

primary goes down due to any reason all calls automatically route to the secondary until the primary recovers

and starts up.

Using Luna HSM in FIPS mode

Under FIPS 186-3/4, the RSA methods permitted for generating keys are 186-3 with primes and 186-3 with aux

primes. This means that RSA PKCS and X9.31 key generation is no longer approved for operation in a FIPS-

compliant HSM. If you are using the Luna HSM in FIPS mode, you have to make the following change in

configuration file:

For Linux

Misc = {

RSAKeyGenMechRemap = 1;

}

For Windows

[Misc]

RSAKeyGenMechRemap=1

The above setting redirects the older calling mechanism to a new approved mechanism when Luna HSM is in

FIPS mode.

NOTE: The above setting is not required for Universal Client. This setting is applicable only
for Luna Client 7.x.

Configure Luna Cloud HSM service

Follow these steps to set up your Luna Cloud HSM:

1. Transfer the downloaded .zip file to your client workstation using pscp, scp, or other secure means.

https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Home_Luna.htm

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
7

2. Extract the .zip file into a directory on your client workstation.

3. Extract or untar the appropriate client package for your operating system using the following command:

tar -xvf cvclient-min.tar

NOTE: Do not extract to a new subdirectory. Place the files in the client install directory.

4. Run the setenv script to create a new configuration file containing information required by the Luna Cloud

HSM service:

source ./setenv

NOTE: To add the configuration to an already installed UC client, use the -addcloudhsm
option when running the setenv script.

5. Run the LunaCM utility and verify that the Cloud HSM service is listed.

NOTE: If your organization requires non-FIPS algorithms for your operations, ensure that the
Allow non-FIPS approved algorithms check box is checked. For more information, refer to
Supported Mechanisms.

Set up OpenSSL toolkit

Download the OpenSSL toolkit with Gem Engine support from Thales Customer Support portal.

NOTE:

The Doc ID for downloading the GemEngine v1.6 from support portal is KB0026742.

The Doc ID for downloading the GemEngine v1.5 from support portal is KB0024584.

The Doc ID for downloading the GemEngine v1.3 from support portal is KB0017806.

The Doc ID for downloading the GemEngine v1.2 from support portal is KB0016309.

It is recommended that you should familiarize yourself with OpenSSL. Refer to OpenSSL Documentation for

more information about OpenSSL.

Integrating Luna HSM with OpenSSL using Gem Engine
To integrate Luna HSM with OpenSSL using Gem Engine, follow the steps mentioned below in accordance with

your environment configuration:

 Integrate OpenSSL with Luna HSM on UNIX

 Integrate OpenSSL with Luna HSM on Windows

Integrate OpenSSL with Luna HSM on UNIX

To integrate OpenSSL with Luna HSM on UNIX, follow these steps:

 Install and configure OpenSSL toolkit

 Configure Gem Engine to use Luna HSM on Unix

 Verify the OpenSSL and Gem Engine Integration on Unix

https://thalesdocs.com/dpod/services/luna_cloud_hsm/extern/client_guides/Content/sdk/luna_cloud_mechanisms/mechanisms.htm
https://www.openssl.org/docs/

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
8

Install and configure OpenSSL toolkit

To install and configure OpenSSL toolkit on UNIX, follow one of the scenarios below as per your requirements:

 Scenario A: Integrate pre-built dynamic engine with an existing installation of OpenSSL

 Scenario B: Compile the dynamic engine and integrating with an existing installation of OpenSSL

 Scenario C: Compile and install OpenSSL from source and compiling and installing Gem Engine

 Scenario D: Configure OpenSSL to enable Gem Engine by default

Scenario A: Integrate pre-built dynamic engine with an existing installation of OpenSSL

1. Extract the Gem Engine toolkit and navigate to the Gem Engine directory.

2. Locate the libgem.so or gem.so and sautil binaries available at:

builds/linux/<distributor>/<bit_version>/<OpenSSL_version>

Example:

builds/linux/rhel/64/3.0/

NOTE: Locate the dynamic engine library libgem.so in the exact <OpenSSL_version>

directory. For OpenSSL version 1.1.x onwards, the dynamic engine library is gem.so.

3. Use gembuild to locate the OpenSSL Engines directory.

./gembuild locate-engines

4. Copy the libgem.so or gem.so to the OpenSSL (depending on the version installed) engines directory to

install the Gem Engine.

Example:

cp <gem-engine directory>/builds/linux/rhel/64/3.0/gem.so /usr/lib64/engines-

3

5. Copy the sautil utility to /usr/local/bin according to your OpenSSL version.

Example:

cp <gem-engine directory>/builds/linux/rhel/64/3.0/sautil /usr/local/bin

6. Run the sautil utility to see if you get all the options listed.

/usr/local/bin/sautil

7. Add openssl and sautil location to PATH environment variable, if they are not in system defaults.

Example:

export PATH=/usr/local/bin:$PATH

8. Add openssl library location to LD_LIBRARY_PATH environment variable, if not present at system defaults.

Example:

export LD_LIBRARY_PATH=/usr/local/lib64:$LD_LIBRARY_PATH

9. Verify that the Gem Engine support is available.

openssl engine gem -v

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
9

If the output looks like the example above, it indicates that the Gem Engine is successfully installed. Now
follow the steps to configure Gem Engine to use Luna HSM.

Scenario B: Compile the dynamic engine and integrating with an existing installation of OpenSSL

NOTE: Ensure the system has a C compiler and access to the make utility.

1. Download and extract the OpenSSL source tar ball from https://www.openssl.org/source/. It is required to
download the version which is closest to your existing OpenSSL installation. For example if you have
OpenSSL v1.1.1 is installed you need to download any OpenSSL v1.1.x where x can be any number.

tar xvfz openssl-x.x.x.tar.gz

2. Navigate to the Gem Engine directory to locate the engine location for the existing OpenSSL.

./gembuild locate-engines

Note the OpenSSL Engine directory that will be used as an input for next command.

3. Run gembuild config and provide the inputs required to compile the engine.

Example:

./gembuild config --openssl-source=<Path to extracted OpenSSL source

directory> --openssl-engines=<Path to Engine directory from step 2> --config-

bits=64

NOTE: If the OpenSSL development package is not available, you need to install it on the
system. In this example, it is assumed that the OpenSSL headers directory is located in
/usr/include. If the header files are located in a different location, the --openssl-

includes option must be used. The --openssl-libs option must be used to specify the

location of the lib directory if libcrypto.so is available at a location other than the default

libs location. All paths need to be absolute.

The gembuild script in GemEngine 1.6 has a new option "--openssl-api=<major>"

where <major> is the major version of the openssl build.

Examples:

--openssl-api=3.0

or

--openssl-api=1.1.1

4. Install the required EC header files.

./gembuild openssl-ec-headers

5. Compile the engine.

./gembuild engine-build

NOTE: If you encounter a known issue in this step, refer the Troubleshooting section.

https://www.openssl.org/source/

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
10

6. Install the Gem Engine.

./gembuild engine-install

7. Verify that the Gem Engine support is available.

openssl engine gem -v

If the output resembles the example above, it indicates that the Gem Engine is successfully installed.

8. Compile and install sautil. By default, this will install the sautil command to

/usr/local/bin/sautil. If a different location is desired, use the --sautil-prefix option to

specify the desired directory in Step 3, or use the --sautil-prefix option with the “./gembuild

sautil-install” command.

./gembuild sautil-build

./gembuild sautil-install

Now follow the steps to configure Gem Engine to use Luna HSM.

Scenario C: Compile and install OpenSSL from source and compiling and installing Gem Engine

1. Download and extract the OpenSSL source tarball. Download openssl-x.x.xx.tar.gz from
https://www.openssl.org/source/

tar xvfz openssl-x.x.xx.tar.gz

2. If you are using FIPS, download and extract the OpenSSL FIPS module. If you are not using FIPS, proceed
to step 3.

NOTE: This step is applicable till OpenSSL v1.0.2. Skip this step for latest OpenSSL.

Example:

Download the openssl-fips-2.0.x.tar.gz file from https://www.openssl.org/source/

tar xvfz openssl-fips-2.0.x.tar.gz

3. Extract the Gem Engine toolkit and navigate to the Gem Engine directory. Run the gembuild config

command using the --prefix option.

NOTE: If using the OpenSSL v1.0.2 with FIPS module, add the --openssl-fips-

source=<Path to openssl-fips-2.0.x> to the “gembuild config” command.

Example:

./gembuild config --openssl-source=<Path to extracted OpenSSL source

directory> --prefix=/usr/local --config-bits=64

NOTE: If using GemEngine v1.3 or above to build and install OpenSSL v1.0.2, must include
the option --compat-102 in the above command.

OpenSSL v1.0.2 support is removed from GemEngine v1.6.

https://www.openssl.org/source/
https://www.openssl.org/source/

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
11

The gembuild script in GemEngine 1.6 has a new option "--openssl-api=<major>"

where <major> is the major version of the openssl build.

Examples:

--openssl-api=3.0

or

--openssl-api=1.1.1

4. If you are using FIPS, compile and install the FIPS module. If you are not using FIPS, proceed to step 5.

NOTE: This step is applicable till OpenSSL v1.0.2. Skip this step for latest OpenSSL.

./gembuild openssl-fips-build

./gembuild openssl-fips-install

5. Compile and install the OpenSSL using toolkit.

./gembuild openssl-build

./gembuild openssl-install

6. Compile and install gem dynamic engine and verify the engine.

./gembuild engine-build

NOTE: If you encounter any known issue here, refer the Troubleshooting section.

./gembuild engine-install

/usr/local/ssl/bin/openssl engine gem -v

If the output looks like above, then the Gem Engine is successfully installed.

7. Compile and install sautil.

./gembuild sautil-build

./gembuild sautil-install

NOTE: sautil will install to “<prefix>/sautil/bin/sautil” where <prefix> is the

directory specified with the --prefix option in step 3. If you require a different location

include the --sautil-prefix option to specify the desired directory as part of the

/gembuild sautil-install command.

8. Add openssl and sautil location to the PATH environment variable.

Example:

export PATH=/usr/local/ssl/bin:/usr/local/sautil/bin:$PATH

9. Add openssl library location to LD_LIBRARY_PATH environment variable.

Example:

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
12

export LD_LIBRARY_PATH=/usr/local/ssl/lib:$LD_LIBRARY_PATH

Now follow the steps to Configure Gem Engine to use Luna HSM.

Scenario D: Configure OpenSSL to enable Gem Engine by default

1. Locate the OpenSSL configuration file openssl.cnf and engines directory.

openssl version -d

OPENSSLDIR: "/usr/local/ssl"

This provides the location of the OpenSSL directory.

./gembuild locate-engines

This gives the location of the directory where the libgem.so or gem.so file is available.

NOTE: Above command will show OpenSSL which is set via the PATH environment variable.

Run which openssl to verify you are accessing the correct configuration file.

2. Edit the openssl.cnf file, as provided below.

Insert near top of file openssl.cnf:

openssl_conf = openssl_init

Insert at bottom of file openssl.cnf:

[openssl_init]

engines = engine_section

[engine_section]

gem = gem_section

[gem_section]

dynamic_path = /usr/local/ssl/lib/engines/libgem.so

default_algorithms = ALL

NOTE: Make sure to give correct dynamic engine library in dynamic_path.

3. Verify that the engine is loaded without specifying it.

openssl engine -v

If the output resembles the example above, then the Gem Engine is configured as default engine.

4. Test the application by generating a certificate request without using the engine parameter.

openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout privateKey.key

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
13

Configure Gem Engine to use Luna HSM on UNIX

To configure Gem Engine to use Luna HSM on UNIX, complete one of the following tasks, depending on the

Luna HSM that you are using:

Configure Gem Engine for Luna HSM

Configure Gem Engine for Luna Cloud HSM service

Configure Gem Engine for Luna HSM

To configure Gem Engine for Luna HSM:

1. Open the /etc/Chrystoki.conf file and add the following GemEngine section:

GemEngine = {

LibPath = /usr/safenet/lunaclient/lib/libCryptoki2.so;

LibPath64 = /usr/safenet/lunaclient/lib/libCryptoki2_64.so;

EnableDsaGenKeyPair = 1;

EnableRsaGenKeyPair = 1;

DisablePublicCrypto = 1;

EnableRsaSignVerify = 1;

EnableLoadPubKey = 1;

EnableLoadPrivKey = 1;

DisableCheckFinalize = 1;

DisableEcdsa = 1;

DisableDsa = 0;

DisableRand = 0;

EngineInit = <slot_id>:10:11;

}

NOTE: <slot_id> must be replaced with the actual value of physical or virtual slot.

2. Run the sautil utility to open the persistent sautil session on the Luna HSM slot.

/usr/local/bin/sautil -v -s <slot_id> -i 10:11 -o -q

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
14

NOTE: If the persistent session is not the requirement, you can refer to the README-GEM-
CONFIG file present in the <GemEngine_Directory>/docs folder for other methods to

login.

Configure Gem Engine for Luna Cloud HSM service

1. Create a text file to store the partition crypto officer password in that file.

echo <partition_password> > <path_to_my_passfile>/passfile

2. Open the /<ChrystokiConfigurationFile_Directory>/Chrystoki.conf file and add the

following text to the GemEngine section:

GemEngine = {

LibPath = <path to LibCryptoki2.so>;

LibPath64 = <path to LibCryptoki2_64.so>;

EnableDsaGenKeyPair = 1;

EnableRsaGenKeyPair = 1;

DisablePublicCrypto = 1;

EnableRsaSignVerify = 1;

EnableLoadPubKey = 1;

EnableLoadPrivKey = 1;

DisableCheckFinalize = 1;

DisableEcdsa = 1;

DisableDsa = 0;

DisableRand = 0;

EngineInit = "<Partition Label>":0:0:passfile=<path_to_my_passfile>/passfile;

EnableLoginInit = 1;

NOTE: <Partition Label> must be replaced with the actual label of your partition and

passfile must point to the actual path of the file containing CO password.

3. In the Misc section of Chrystoki.conf file, add the following flag and save the changes. Do not delete

the default values already present in the Misc section.

Misc = {

 FinalizeOnClose = 1;

}

Verify the OpenSSL and Gem Engine Integration on UNIX

Use the following steps to verify the OpenSSL and Gem Engine integration on UNIX:

 Generate cryptographic objects for OpenSSL

 Use OpenSSL to sign, verify, encrypt, and decrypt a message

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
15

Generate cryptographic objects for OpenSSL

Generate the CA private key and CA certificate for OpenSSL and then use the CA private key and certificate to

generate the receiver and sender certificates. To generate cryptographic objects for OpenSSL:

1. Open the <OPENSSLDIR>/openssl.cnf file in a text editor and edit the [CA_default] section. Make

the following changes:

dir = /usr/local/ssl

new_certs_dir = $dir/certs

NOTE: You can change dir to the directory of your choice, but make sure to use correct path
in the subsequent steps.

2. Create a directory for saving the generated certificates if the directory doesn’t exist already.

mkdir -p /usr/local/ssl/certs

3. Create the text files /usr/local/ssl/index.txt and /usr/local/ssl/serial.

4. Open the /usr/local/ssl/serial file and write 01 at the top and press enter. Save the file.

5. Create a 2048-bit private key for CA using Gem Engine. The key will be generated on the Luna HSM’s
partition.

openssl genrsa -engine gem 2048

6. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

Example:

/usr/safenet/lunaclient/bin/cmu list

Provide partition password when prompted and note down the private key label of CA keys.

7. Create a CA certificate based on the generated key that is used for signing other certificates:

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -out

/usr/local/ssl/certs/ca.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the CA

private key on the Luna HSM or Luna Cloud HSM service created in step 5.

8. Create a directory to generate the certificate request for the sender and receiver.

mkdir /usr/local/ssl/certs/sender

mkdir /usr/local/ssl/certs/receiver

9. Generate a certificate request for sender.

openssl req -engine gem -newkey rsa:2048 -out

/usr/local/ssl/certs/sender/sender.txt

Sender request is used to generate the sender’s certificate signed by the CA.

10. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

Example:

/usr/safenet/lunaclient/bin/cmu list

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
16

Provide partition password when prompted and note down the private key label of sender keys.

11. Generate a certificate request for receiver.

openssl req -engine gem -newkey rsa:2048 -out

/usr/local/ssl/certs/receiver/receiver.txt

Receiver request is used to generate the receiver’s certificate signed by the CA.

12. List the generated key pair using the cmu utility.

<LunaClient_Installation_Directory>/bin/cmu list

Example:

/usr/safenet/lunaclient/bin/cmu list

Provide partition password when prompted and note down the private key label of receiver keys.

13. Sign the certificate request of sender by CA .

openssl ca -engine gem -policy policy_anything -cert

/usr/local/ssl/certs/ca.cer -in /usr/local/ssl/certs/sender/sender.txt -keyfile

rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -out

/usr/local/ssl/certs/sender/sender.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the ca

private key on the Luna HSM or Luna Cloud HSM service created in step 5.

14. Sign the certificate request for receiver by CA.

openssl ca -engine gem -policy policy_anything -cert

/usr/local/ssl/certs/ca.cer -in /usr/local/ssl/certs/receiver/receiver.txt -

keyfile rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd -keyform engine -

out /usr/local/ssl/certs/receiver/receiver.cer

Where rsa-private-a55e015d94ee6c4a559dfab7c39a2069d4064bcd is the object label for the ca

private key on the Luna HSM or Luna Cloud HSM service that was created in step 5.

Use OpenSSL to sign, verify, encrypt, and decrypt a message

The sender will send a message to the receiver by signing the message with the sender’s own private key and
encrypting the message with the receiver’s public key. The receiver then decrypts the message using the
receiver’s own private key and verifies the message using the sender’s public key. To do so, follow the below
steps:

NOTE: Luna Cloud HSM and Luna HSM f/w 7.7.2 onwards do not support RSA_PKCS for
encryption/decryption in FIPS mode whereas OpenSSL CMS uses RSA_PKCS only. If your
HSM is operating in FIPS as mentioned please follow APPENDIX-A to performing the same
crypto operations.

1. Create a text file named message.txt.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
17

NOTE: Sender and Receiver keys are stored on the Luna HSM or Luna Cloud HSM
service. Use the object label of keys on Luna HSM partition to decrypt and sign the
messages.

2. Sign the message.txt file using the sender’s private key.

openssl cms -engine gem -sign -in message.txt -signer

/usr/local/ssl/certs/sender/sender.cer -inkey rsa-private-

7dfdb3caaf25a63b3d8a81d2a3b51668decafe0f -keyform engine -out sendmail.msg

Where rsa-private-7dfdb3caaf25a63b3d8a81d2a3b51668decafe0f is the object label for the

sender private key on the Luna HSM or Luna Cloud HSM service.

3. Encrypt the sendmail.msg using the receiver’s public key that is supplied with the receiver’s certificate.

openssl cms -engine gem -encrypt -in sendmail.msg -out sendmail_enc.msg

/usr/local/ssl/certs/receiver/receiver.cer

4. Decrypt the sendmail_enc.msg using the receiver’s private key.

openssl cms -engine gem -decrypt -in sendmail_enc.msg -inkey rsa-private-

ec0fcb1ce9114662556caab35fc2baf0565752ec -keyform engine -out sendmail_dec.msg

Where rsa-private-ec0fcb1ce9114662556caab35fc2baf0565752ec is the object label for the

receiver private key on the Luna HSM or Luna Cloud HSM service.

5. Verify the signature of sendmail_dec.msg using the public key with the sender’s certificate.

openssl cms -engine gem -verify -in sendmail_dec.msg -CAfile

/usr/local/ssl/certs/ca.cer -out out.txt /usr/local/ssl/certs/sender/sender.cer

6. Open the out.txt file and compare the contents from the message.txt. Both the files must have the

same message that proves all crypto operations are performed successfully.

7. Close the sautil session if you are using Luna HSM slot.

/usr/local/bin/sautil -c -s <slot_id> -i 10:11 –q

This completes the integration of OpenSSL with Luna Network HSM or a Luna Cloud HSM service using
Gem Engine on UNIX.

Integrate OpenSSL with Luna HSM on Windows

To integrate OpenSSL with Luna HSM using Gem Engine, follow these steps:

 Install and configure OpenSSL toolkit

 Configure Gem Engine to use Luna HSM

 Verify the OpenSSL and Gem Engine integration on Windows

Install and configure OpenSSL toolkit

To install and configure the OpenSSL toolkit on Windows:

1. Navigate to the OpenSSL toolkit <engine-directory>\builds\win and extract the file sautil-

win64-openssl-x.x.xx.tar.gz and ssl-win64-openssl-x.x.xx.tar.gz in C:\ directory.

2. Add C:\cygwin\usr\local\sautil\bin and C:\cygwin\usr\local\ssl\bin to your system

path (Control Panel -> System -> Change Settings -> Advanced -> Environment
Variables -> System Variables).

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
18

NOTE: We recommend adding these files to the Path. This step is not mandatory.

3. Create the directory C:\ssl as the common working directory for the Windows installation.

4. Create an openssl.cnf file under the working directory. Copy and paste the following text in the

openssl.cnf file and save it as C:\ssl\openssl.cnf:

SSLeay example configuration file.

 # This is mostly being used for generation of certificate requests.

 #

 RANDFILE = .rnd

 ##

 [ca]

 default_ca = CA_default # The default ca section

 ##

 [CA_default]

certs = certs # Where the issued certs are kept

crl_dir = crl # Where the issued crl are kept

database = index.txt # database index file.

new_certs_dir = certs # default place for new certs.

certificate = cacert.pem # The CA certificate

serial = serial.txt # The current serial number

crl = crl.pem # The current CRL

private_key = private\cakey.pem # The private key

RANDFILE = private\private.rnd # private random number file

x509_extensions = x509v3_extensions # The extentions to add to the cert

default_days = 365 # how long to certify for

default_crl_days = 30 # how long before next CRL

default_md = md5 # which md to use.

preserve = no # keep passed DN ordering

 # A few different ways of specifying how similar the request should look

 # For type CA, the listed attributes must be the same, and the optional

 # and supplied fields are just that :-)

 policy = policy_match

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
19

 # For the CA policy

 [policy_match]

 countryName = match

 stateOrProvinceName = match

 organizationName = match

 organizationalUnitName = match

 commonName = supplied

 emailAddress = optional

 # For the 'anything' policy

 # At this point in time, you must list all acceptable 'object'

 # types.

 [policy_anything]

 countryName = optional

 stateOrProvinceName = optional

 localityName = optional

 organizationName = optional

 organizationalUnitName = optional

 commonName = supplied

 emailAddress = optional

 ##

 [req]

 default_bits = 1024

 default_keyfile = privkey.pem

 distinguished_name = req_distinguished_name

 attributes = req_attributes

 [req_distinguished_name]

 countryName = Country Name (2 letter code)

 countryName_min = 2

 countryName_max = 2

 stateOrProvinceName = State or Province Name (full name)

 localityName = Locality Name (eg, city)

 0.organizationName = Organization Name (eg, company)

 organizationalUnitName = Organizational Unit Name (eg, section)

 commonName = Common Name (eg, your website's domain name)

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
20

 commonName_max = 64

 emailAddress = Email Address

 emailAddress_max = 40

 [req_attributes]

 challengePassword = A challenge password

 challengePassword_min = 4

 challengePassword_max = 20

 [x509v3_extensions]

 # under ASN.1, the 0 bit would be encoded as 80

 # nsCertType = 0x40

 #nsBaseUrl

 #nsRevocationUrl

 #nsRenewalUrl

 #nsCaPolicyUrl

 #nsSslServerName

 #nsCertSequence

 #nsCertExt

 #nsDataType

NOTE: You can configure the toolkit using the openssl.cnf file.

5. Set the OpenSSL configuration file path. Execute the following command in the command prompt:

set OPENSSL_CONF=C:\ssl\openssl.cnf

Configure Gem Engine to use Luna HSM on Windows

To configure Gem Engine to use Luna HSM on Windows, complete one of the following tasks, depending on

your requirements:

Configure Gem Engine for Luna HSM

Configure Gem Engine for Luna HA slot or Luna Cloud HSM service

Configure Gem Engine for Luna HSM

To configure Gem Engine for Luna HSM:

1. Open the crystoki.ini file and add the following text to the GemEngine section:

 [GemEngine]

 LibPath = <Luna Client installation Directory>\cryptoki.dll

 LibPath64 = <Luna Client installation Directory>\cryptoki.dll

 EnableDsaGenKeyPair = 1

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
21

 EnableRsaGenKeyPair = 1

 DisablePublicCrypto = 1

 EnableRsaSignVerify = 1

 EnableLoadPubKey = 1

 EnableLoadPrivKey = 1

 DisableCheckFinalize = 1

 DisableEcdsa = 1

 DisableDsa = 0

 DisableRand = 0

EngineInit = <slot_id>:10:11

2. Run the sautil utility to open the persistent sautil session on Luna HSM slot.

C:\OpenSSL\sautil\bin>sautil -v -s <slot_id> -i 10:11 –o –q

NOTE: For more login methods for session, refer to the README-GEM-CONFIG file present
in <GemEngine_Directory>\docs folder.

Configure Gem Engine for Luna Cloud HSM service

1. Create a text file passfile in <path_to_my_passfile> and store the partition password in it.

2. Open the crystoki.ini file and add the following text to the GemEngine section:

 [GemEngine]

 LibPath = <Path to cryptoki.dll>

 LibPath64 = <Path to cryptoki.dll>

 EnableDsaGenKeyPair = 1

 EnableRsaGenKeyPair = 1

 DisablePublicCrypto = 1

 EnableRsaSignVerify = 1

 EnableLoadPubKey = 1

 EnableLoadPrivKey = 1

 DisableCheckFinalize = 1

 DisableEcdsa = 1

 DisableDsa = 0

 DisableRand = 0

 EngineInit = "myTokenLabel":0:0:passfile=<path_to_my_passfile>\passfile

EnableLoginInit = 1

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
22

NOTE: <Partition Label> must be replaced with the actual label of your partition and

passfile must point to the actual path of the file containing CO password.

Verify the OpenSSL and Gem Engine integration on Windows

Complete the following steps to verify the OpenSSL and Gem Engine integration:

 Generate cryptographic objects for OpenSSL

 Use OpenSSL to sign, verify, encrypt, and decrypt a message

Generate cryptographic objects for OpenSSL

Generate the CA private key and CA certificate for OpenSSL and then use the CA private key and certificate to

generate the receiver and sender certificates. To generate cryptographic objects for OpenSSL:

1. Set the OPESSL_CONF path to use with OpenSSL:

set OPESSL_CONF =<Path to openssl.conf>

2. Create the following directories for the OpenSSL operations:

C:\ssl>mkdir keys

C:\ssl>mkdir requests

C:\ssl>mkdir certs

3. Create the index.txt file, which will be an empty (zero-byte) text file under C:\ssl\index.txt.

4. Create the serial number file serial.txt. This is a plain ASCII file containing the string 01 on the first line,

followed by a new line under C:\ssl\serial.txt.

5. Copy the libeay32.dll and the ssleay32.dll library to the directory containing the sautil.exe file.

NOTE: Skip this step if you are using Gem Engine 1.3 or above.

6. Create a 2048-bit private key on Luna HSM using Gem Engine. This key pair will be used later to create the
CA.

C:\ssl>openssl genrsa -engine gem 2048

The RSA 2048 bit key for CA is generated on the Luna HSM partition or Luna Cloud HSM service.

7. List the generated key pair by using the cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

Example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide partition password when prompted.

8. Create a CA certificate based on the generated key:

C:\ssl>openssl req -engine gem -new -x509 -days 365 -key rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out certs/ca.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA

private key on the Luna HSM or Luna Cloud HSM service created in step 6.

9. Create a certificate request for the sender.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
23

C:\ssl>openssl req -engine gem -newkey rsa:2048 -out requests/sender.txt

Sender request is used to generate the sender’s certificate signed by the CA.

10. List the generated key pair using cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

Example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide partition password when prompted.

11. Create a certificate request for the receiver.

C:\ssl>openssl req -engine gem -newkey rsa:2048 -out requests/receiver.txt

Receiver request is used to generate the receiver’s certificate signed by the CA.

12. List the generated key pair by using the cmu utility.

<LunaClient_Installation_Directory>\Cmu.exe list

Example:

C:\Program Files\SafeNet\LunaClient\Cmu.exe list

Provide the partition password when prompted.

13. Use the CA to sign the certificate request for sender.

C:\ssl>openssl ca -engine gem -policy policy_anything -cert certs/ca.cer -in

requests/sender.txt -keyfile rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out certs/sender.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA

private key on the Luna HSM or HSM on Luna Cloud HSM service created in step 6.

14. Use the CA to sign the certificate request for receiver.

C:\ssl>openssl ca -engine gem -policy policy_anything -cert certs/ca.cer -in

requests/receiver.txt -keyfile rsa-private-

08bde9331fa3be515d2e7db9dd1e28b36b50632e -keyform engine -out

certs/receiver.cer

Where rsa-private-08bde9331fa3be515d2e7db9dd1e28b36b50632e is the object label for the CA

private key on the Luna HSM or HSM on Luna Cloud HSM service created in step 6.

Use OpenSSL to sign, verify, encrypt, and decrypt a message

The sender will send a message to the receiver by signing the message with the sender’s private key and
encrypting the message with the receiver’s public key. The receiver then decrypts the message using the
receiver’s private key and verifies the message using the sender’s public key. To do so, follow the below steps:

NOTE: Luna Cloud HSM and Luna HSM f/w 7.7.2 onwards do not support RSA_PKCS for
encryption/decryption in FIPS mode whereas OpenSSL CMS uses RSA_PKCS only. If your
HSM is operating in FIPS as mentioned please follow APPENDIX-A to performing the same
crypto operations.

1. Create the text file message.txt in the C:\ssl directory.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
24

NOTE: Sender and Receiver keys are stored on the Luna HSM or Luna Cloud HSM
service. Use the object label of those keys to encrypt, decrypt, and sign using those keys.

2. Sign the message.txt using the sender’s private key.

C:\ssl>openssl cms -engine gem -sign -in message.txt -signer certs\sender.cer -

inkey rsa-private-605ddfab1e95bfac36eec44f291647e8a3ff5f64 -keyform engine -out

sendmail.msg

Where rsa-private-605ddfab1e95bfac36eec44f291647e8a3ff5f64 is the object label for the

sender’s private key on the Luna HSM or Luna Cloud HSM service.

3. Encrypt the sendmail.msg using the receiver’s public key supplied with the receiver’s certificate.

C:\ssl>openssl cms -engine gem -encrypt -in sendmail.msg -out sendmail_enc.msg

certs\receiver.cer

4. Decrypt the sendmail_enc.msg using the receiver’s private key.

C:\ssl>openssl cms -engine gem -decrypt -in sendmail_enc.msg -inkey rsa-

private-a216d3b9276268459598f163ff7163aa30cbd3d0 -keyform engine -out

sendmail_dec.msg

Where rsa-private-a216d3b9276268459598f163ff7163aa30cbd3d0 is the object label for the

receiver’s private key on the Luna HSM or Luna Cloud HSM service.

5. Verify the signature of sendmail_dec.msg using the sender’s public key supplied with the sender’s

certificate.

C:\ssl>openssl cms -engine gem -verify -in sendmail_dec.msg -CAfile

certs\ca.cer -out out.txt certs\sender.cer

6. Open the out.txt file and compare the contents with the message.txt file. Both the files must have the

same message that proves all crypto operations are performed successfully.

7. If you are using Luna HSM partition, close the session with sautil.

C:\OpenSSL\sautil\bin>sautil -c -s <slot_id> -i 10:11 –q

This completes the integration of OpenSSL with Luna Network HSM or Luna Cloud HSM service using Gem

Engine on Windows.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
25

Appendix-A
The sender will send a message to the receiver by signing the message with the sender’s own private key and
encrypting the message with the receiver’s public key. The receiver then decrypts the message using the
receiver’s own private key and verifies the message using the sender’s public key. To do so, follow the below
steps:

Use OpenSSL to sign, verify, encrypt, and decrypt a message

NOTE: Luna Cloud HSM and Luna HSM f/w 7.7.2 onwards do not support RSA_PKCS for
encryption/decryption in FIPS mode whereas OpenSSL CMS uses RSA_PKCS only.
Performing the crypto operations required the below steps when your HSM in FIPS mode as
mentioned here.

1. Create a text file named message.txt.

NOTE: Sender and Receiver keys are stored on the Luna HSM or Luna Cloud HSM
service. Use the object label of keys on Luna HSM partition to decrypt and sign the
messages.

2. Sign the message.txt file using the sender’s private key.

openssl cms -engine gem -sign -in message.txt -signer

/usr/local/ssl/certs/sender/sender.cer -inkey rsa-private-

613247c58f0ca0d7f2bb5a14efb2c7d53ed45322 -keyform engine -out sendmail.msg

Where rsa-private-613247c58f0ca0d7f2bb5a14efb2c7d53ed45322 is the object label for the

sender’s private key on the Luna HSM.

3. Encrypt the signed file sendmail.msg using the receiver’s public key that is supplied with the receiver’s

certificate. To encrypt the file, first generate an AES key to encrypt the signed file and then encrypt the AES
key using receiver’s public key.

• To generate AES key:

openssl rand -engine gem -hex 32 > encryption_aes.key

• Encrypt the signed message by generated AES key:

openssl enc -aes-256-cbc -a -pbkdf2 -k encryption_aes.key -in sendmail.msg -

out sendmail.enc

• Encrypt the AES key by Receiver’s Public key:

openssl rsautl -encrypt -oaep -engine gem -in encryption_aes.key -out

encryption_aes.enc -certin -inkey /usr/local/ssl/certs/receiver/receiver.cer

4. Send the encrypted message and encryption key to receiver.

5. Receiver will decrypt the received AES key encryption_aes.enc using own Private key and then

decrypt the encrypted message sendmail.enc using the AES key.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
26

• To decrypt AES key using Receiver’s Private Key:

openssl rsautl -decrypt -oaep -engine gem -in encryption_aes.enc -out

encryption_aes.key -inkey rsa-private-489393ff23d93012ab85d859cf3386ef42fcc186

-keyform engine

Where rsa-private-489393ff23d93012ab85d859cf3386ef42fcc186 is the object label for the

receiver’s private key on the Luna HSM.

• Decrypt the signed message by decrypted AES key:

openssl enc -aes-256-cbc -d -a -pbkdf2 -k encryption_aes.key -in sendmail.enc

-out sendmail.dec

6. Verify the signature of sendmail.dec using the public key with the sender’s certificate.

openssl cms -engine gem -verify -in sendmail.dec -CAfile

/usr/local/ssl/certs/ca.cer -out sendmail.txt

/usr/local/ssl/certs/sender/sender.cer

7. Open the sendmail.txt file and compare the contents from the message.txt. Both the files must have

the same message that proves all crypto operations are performed successfully.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
27

Troubleshooting

Problem 1

SAUTIL is not found on your system. If the OpenSSL was previously installed, or if you have patched the Luna

Engine in the OpenSSL source code, then the SAUTIL utility will not be available on the system.

Solution

SAUTIL is installed by default with OpenSSL when you install the OpenSSL from Apache Toolkit. If SAUTIL is

not available, you can install it by completing the following steps:

• Traverse to the toolkit and untar the luna-samples file.

• Under the luna-samples, you will find sautil. Under sautil, you will find the sautil.c file.

• Open the sautil.c, search for “#define LUNA_OSSL_ECDSA (1)”, and disable it.

• Save and close the file and run the following commands in sautil directory under luna-samples.

./configure.sh

make

• Verify /usr/local/sautil/bin/sautil is installed on your system.

Problem 2

OpenSSL source installation fails with the following error using the gembuild script provided with OpenSSL

toolkit:

make[2]: *** No rule to make target `../../include/openssl/idea.h', needed by

`e_idea.o'. Stop.

make[2]: Leaving directory `/home/openssl-1.0.1s/crypto/evp'

make[1]: *** [subdirs] Error 1

make[1]: Leaving directory `/home/openssl-1.0.1s/crypto'

make: *** [build_crypto] Error 1

ERROR: There was an issue compiling OpenSSL. See /home/gemengine-1.1/logs/openssl-

build.log for details.

Solution

Add make depend to the gembuild script on line 453 right after the “make clean”. The error is the result of a

recent change in OpenSSL that requires make depend to be run before make install.

Problem 3

OpenSSL sign operation is displaying the Segmentation Fault (core dumped) error, when using OpenSSL

v1.1.0 with Gem Engine.

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

d6b5261ac7f89d6b3b80d4c0f8aea11f185b95a1 -keyform engine -out

/usr/local/ssl/certs/ca.cer

engine "gem" set.

You are about to be asked to enter information that will be incorporated

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
28

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IN

State or Province Name (full name) []:Uttar Pradesh

Locality Name (eg, city) []:Noida

Organization Name (eg, company) []: Thales

Organizational Unit Name (eg, section) []: HSM

Common Name (eg, your websites domain name) []:ca.example.com

Email Address []:

Segmentation fault (core dumped)

Solution

This error occurs when the Gem Engine calls the function luna_fini_p11 while in the execution path of

exit(). Complete the following procedure to overcome the error.

• Open the <gemengine directory>/engine/e_gem.c file in the vi editor.

vi /home/gemengine-1.3/engine/e_gem.c

• At line 934, comment the function as follows:

//luna_fini_p11();

• Save and close the file.

• Remove the gem.so from the OpenSSL engine directory.

rm -rf /usr/local/ssl/lib/engines-1.1/gem.so

• Recompile the gem.so.

./gembuild engine-build

./gembuild engine-install

• Rerun the OpenSSL sign operation command that was displaying the Segmentation Fault.

openssl req -engine gem -new -x509 -days 365 -key rsa-private-

d6b5261ac7f89d6b3b80d4c0f8aea11f185b95a1 -keyform engine -out

/usr/local/ssl/certs/ca.cer

engine "gem" set.

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
29

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IN

State or Province Name (full name) []:Uttar Pradesh

Locality Name (eg, city) []:Noida

Organization Name (eg, company) []:Thales

Organizational Unit Name (eg, section) []:HSM

Common Name (eg, your websites domain name) []:ca.example.com

Email Address []:

The certificate signing will get completed without displaying the Segmentation Fault.

OpenSSL: Integration Guide

Copyright © 2023 Thales Group
30

Contacting Customer Support
If you encounter a problem during this integration, contact your supplier or Thales Customer Support. Thales

Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is governed by

the support plan arrangements made between Thales and your organization. Please consult this support plan

for further information about your entitlements, including the hours when telephone support is available to you.

Customer Support Portal

The Customer Support Portal, at https://supportportal.thalesgroup.com, is a database where you can find

solutions for most common problems. The Customer Support Portal is a comprehensive, fully searchable

repository of support resources, including software and firmware downloads, release notes listing known

problems and workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You

can also use the portal to create and manage support cases.

NOTE: You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone Support

If you have an urgent problem, or cannot access the Customer Support Portal, you can contact Thales

Customer Support by telephone at +1 410-931-7520. Additional local telephone support numbers are listed on

the support portal.

https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/

